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We present here the asymptotic coordinate transformation between a coordinate system associated with null 
hypersurfaces and one associated with an asymptotically shear-free (but twisting) null congruence. The general 
asymptotically flat metric is expressed in this new coordinate system. Special cases of this are the algebraically special 
metrics in their "natural" coordinate system. 

1. INTRODUCTION 

In the study of asymptotically flat solutions of the Ein
stein (or Einstein-Maxwell) equations two types of "null 
coordinate" systems have been commonly employed. The 
first of these (referred to as Type I) and by far the most 
frequently used is based on null hypersurfaces at infi
nity.1-5 By now a reasonable understanding of the physi
cal meaning (energy-momentum, angular momentum, 
multipole moments, etc.) of many of the geometric quan
tities involved, has been acquired. The second of these 
coordinate systems 6 - 10 (referred to as Type IT) is based 
on twisting, asymptotically shear-free null geodesics. It 
has been most commonly associated with the class of 
solutions of the Einstein equations known as the alge
braically special, twisting metrics. The physical mean
ing of the geometriC quantities involved in these metrics 
has been obscure. It is one purpose of this paper to ex
press asymptotically these solutions in the first coordi
nate system (and thereby clarify their meaning). This is 
accomplished by solving the broader problem of deter
mining the general coordinate (and associated tetrad) 
transformation between the Type I and IT systems. 

Asymptotically flat spaces have been investigated from 
several points of view. Most earlier investigations were 
based on reasonable guesses for the behavior of the 
metric tensor at spatial infinity. Major work by Bondi1 
and Sachs2 improved the situation greatly by utilizing 
characteristic surfaces and deriving from very simple 
assumptions the asymptotic behavior of the metric ten
sor and the Riemann tensor. In the spin coefficient for
malism developed and applied to asymptotically flat 
space in Np4 and NU5 the emphasis is shifted from the 
metric tensor to the empty space Riemann (Weyl) tensor. 

This point of view is adopted in this work. It is assumed 
that the reader is familiar with this formalism. 

2. PRELIMINARIES 

The coordinatization of asymptotically flat empty spaces 
is most easily approached by conSidering future null in
finity J+ of Penrose,11 (Past null infinite J- could just 
as easily have been considered.) If for descriptive pur
pose we consider only the conformal structure of space
time, then J+ can be treated as an ordinary three-dimen
sional boundary to a four-dimensional region. 

We coordinatize J+, which is a null surface, by first in
troducing arbitrary, nonintersecting, spacelike cuts which 
can be labeled by x O = u = const. Since J+ is S2 X R, its 
generators can be labeled by the complex stereographic 
coordinates of a sphere, ~ and ~. 

There are several ways to coordinatize an interior 
neighborhood of J+ once we have chosen a particular 
coordinate system on J+. Two types of coordinate sys
tems are of particular interest to us. To develop a Type 
I coordinate system, we choose null geodesics, with tan
gent vector Ill, from the interior that are orthogonal to 
the u = const cuts of J+ at every point on the cut. EacE 
of these geodesics is identified by the 1t and the ~ and ~ 
of its intersection with J+. The affine parameter along 
each geodesic serves as the radial coordinate xl = r. 
Because of the hypersurface orthogonal character of the 
geodesics we can choose lj.l = U ,11 = 5~ and 11' = 51!. The 
freedom in the choice of the affine parameter permits us 
to choose the expansion (p = - i l~fl) of the congruence 
to be of the form 

p = - r-1 + O(r-3 ). (2. 1) 
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The complex shear a of the congruence is found to be of 
the form: 

(2.2) 

A tetrad system of the type used in NU can be adapted to 
this coordinate system. The proof of these assertions 
can be found in NU. 

To develop a Type II coordinat~ system, we choose null 
geodesics, with tangent vector ll', from the interior that 
are not orthogonal to the u = const cuts. As will be 
shown later, we can always choose from such geodesics, 
three parameter families which are asymptotically 
shear free, though in general twisting. Though these 
families do not generate null surfaces they still induce a 
coordinate system in the neighborhood of J+ in a manner 
similar to the way Type I :was introduced. Each geodesic 
is labeled by the u, ~,and ~ of its intersection with J+ 
with the_affine length i serving as the radial coordin~te, 
so ~hat ll' = 01'1' The freedom in the choice of the origin 
of r will enab~e us to choose tEe expansion, p to be of the 
form p = - (r + iL:)-l + 0(r-3) or 

P =-i-1 + iL:i-2 + 0(i-3), (2.3) 

where L:, the asymptotic twist, is real. The shear vani
shes asymptotically so that 

a = 0(r-3 ). (2.4) 

A tetrad system of the type used by Talbot 9 can be adap
ted to this coordinate system. 

In each of the above cases (Le., Types I and II) the tangent 
vector ll' to the geodesics is chosen as the first tetrad 
vector. The remaining three tetrad vectors are restrict
ted by the condition that they be parallel propagated 
along each of the geodesics; Le., the spin coefficients 
K, E, and 1T must vanish. The tetrad vectors are expres
sed in the form 

ml' = WO~ + ~ ao~, (2. 5) 

where the index assumes the values 0,2,3. In a Type I 
system Xo = 1 and ~o = O. 

In order to find the coordinate transformation from a 
Type I to II system, it is most convenient to first find the 
associated tetrad transformation where all the vectors 
are described in the I coordinate system. 

The tetrad transformations used are the three two-para
meter tetrad transformations12 which are equivalent to 
the Six-parameter restricted Lorentz group. Though the 
notation does not show it, these transformations are to 
be performed consecutively. We first consider the null 
rotation about nl', with complex parameter b, given by 

lJl = lJl + bmJl + bml' + bbl', nJl = nl', 

ml' = mJl + bnl'. (2.6) 

This will be followed by the null rotation about III with 
complex parameter a, given by 

ll' = lJl, nJl = nl' + amJl + amI' + aall' , 

inl' = mJl + all'. (2.7) 

Finally the Lorentz transformation in the ll', nl' plane 
coupled with the spatial rotation in the m, ml' plane with 
real parameters G and H is given by 

J. Math. Phys., Vol. 13, No. 12, December 1972 

(2.8) 

3. THE TRANSFORMATIONS 

In NU the NP equations were solved asymptotically in a 
Type I coordinate system with its associated tetrad 
~nder the assumption that % = 1/18r-5 + 0(r-6 ). (This 
IS probably the most general asymptotically flat solu
tion.) The entire solution in the form used here is pre
sented elsewhere.l 3 

Starting with this solution (in Type I coordinates) we will 
utilize asymptotically vanishing tetrad transformations 
to obt~in ~ tet,!'ad ~ssociated with a Type II system; Le., 
one WIth K = 1T = E = 0 and asymptotically vanishing 
sh~ar. We first_use Eqs. (2.6), the null rotation about nl', 
to mtroduce an ll' with twist, Le., cause the new P'" p. 
The complex parameter b of the transformation is as
sumed to be of the form 

b = - L(u,~, ~)r-1 + M(u,~, ~)r-2 + 0(r- 3 ). (3.1) 

The new shear a then takes the form (Appendix): 

a = (a O - Li -lSL)r- 2 + (lSM + iM + LM 

-L 3 lSP/P - 2L2lSf) lnP + Lf)ao + a0f)L 

- LMP/P)r- 3 + 0(r-4 ), (3.2) 

where the dot denotes a/au. For a Type II system the 
leading term of a must vanish by definition' therefore L 
is given by a solution of the differential eqdation ' 

aO = lSL + Li. 

The arbitrariness in the solution corresponds to the 
freedom in the choice of the Type II coordinates. 

The spin coefficient K is given by 

(3.3) 

K = (M - La ° + L lS L + L 5' L + LiE) r -3 + 0 ( r -4). 
(3.4) 

With Eq. (3.3) we see that the leading term of K can be 
made to vanish by choosing 

M=-LlSL. (3.5) 

(This choice of M causes in addition the coefficient of 
r -3 in a to vanish.) The vanishing of K is even stronger 
than we have indicated; we can make K vanish to any 
order of r -1 by specifying b to further orders. This 
"vanishing" of K is not changed by the remaining tetrad 
t}ansformations (see Appgndix), and so we can consider 
K to actually vanish and ll' to actually be tangent to a 
geodesic congruence, also a necessary condition for a 
Type II system. 

We now have a tetrad system for asymptotically flat 
space whose 1Jl field is tangent to a geodesic and which is 
asymptotically shear free but twisting. To introduce a 
Type II coordinate system, we wish to have further a 
tetrad for which iT and E vanish as well. We saw that 
for K to vanish we had to, in principle, specify that the 
higher order terms of b cancel the higher order terms 
of K. In order to have iT and E vanish we will have to 
make similar conditions on the other transformation 
parameters a, G, and H of (2. 7) and (2. 8). After a rather 
tedious calculation one finds 

a = i + (Lf)i - by; + LlSf) lnP)r-1 + 0(r-2), (3.6) 



                                                                                                                                    

COORDINATE SYSTEMS 1849 

G = 1- LL(:p;p}r-l + O(r-2}, 

H = i(L'6 InP - L5 InP}r- l + O(r-2}. 

(3.7a) 

(3.7b) 

The transformations (2. 6), (2. 7), and (2. 8), with (3. 1), 
(3. 3), (3. 5), (3. 6), and (3. 7), applied consecutively to a 
Type I tetrad yield the Type II tetrad. 

In order to obtain the Type I to II coordinate transforma
tion' we assume that the coordinates of J+ are the same 
in the two systems, Le., the transformation should be 
asymptotically the identity transformation and have the 
form 

r' = r- bo + blr-l + O(r-2}, 

s' = s + clr-l + c2r-2 + O(r-3}. 

(3. 8a) 

(3.8b) 

(3.8c) 

Since lJ.L (the tangent vector to the Type II geodesics) is 
known (from the tetrad transformation) but with the 
components expressed in_a I coordinate system, the con
dition (2. 5) (namely that lJ.L = 01'1' in a II coordinate sys
tem) severely restricts the transformation (3. 8). In 
fact it determines all the parameters except bo, yielding 

al = LL, 

a2 = iLL(Li + Li - LLP/P + 2'6L + 25L} 

+ i L2 '6L + i L 2 5L, 

(3.9a) 

(3.9b) 

(3. 9c) 

X o = 1 + O(r-2 }, 

X 2 = X 3 = O(r-3 }, 

w = i - LP;P + wOr-l + O(r-2}, 

~o = - Lr-1 - iLLr -2 + O( r-3}, 

~2 = Pr-l + iLPr-2 + O(r-3}, 

~3 = iPr-l - LPr-2 + O(r-3}, 
with 

UO = - '65 lnP - i [L'6P/P + L5P/P + LL 

+ LL - (P/P) (Li + Li) + '6i + 5il, 

wO = 2i L(i - LP;P} + i(LL + '6 L}, 

2iL = '6L - 5L + LL- Li. 

ill. The spin coefficients: 

K = E = 'If = 0, 

a=O(r-4}, 

T = A = O(r-3 }, 

(4.2b) 

(4.2c) 

(4.2d) 

(4.2e) 

(4. 2f) 

(4. 2g) 

(4.2h) 

(4.2i) 

(4. 2j) 

(4.3a) 

(4.3b) 

(4.3c) 

(4. 3d} 

f1 = - (L5P;P + '65 InP - Lip;p + LL + '6i}r-l 

+O(r-2), (4.3e) bl = boLL + L5bo + L'6bo' 

Cl = 2LP, (3.9d) v = 5P/P - ip;p + r + O(r- l }, (4. 3f) 

C2 = 2PL'6L + PL2'6 InP. (3. ge) 

The bo is determlned by (2. 3), Le., by the condition that 
the r'-2 term in p be imaginary. One thus obtains 

bo = - LLP/P + i (8"L + '6L + Lt + Li) 
and 

2i L = '6L - 5L + LL - Li. 

(3.10) 

(3.11) 

4. ASYMPTOTICALLY FLAT SPACE IN A TYPE II 
COORDINATE SYSTEM 

In this section we present a summary of the results of 
the combined coordinate and tetrad transformation on 
the NU solutions. All quantities are expressed in a Type 
II coordinate and tetrad system. These results repre
sent a solution to the general spin coefficient {NP} equa
tions in a Type II coordinate system in asymptotically 
flat space. As such they are presented independently of 
the coordinate transformation, without any indication of 
the transformation such as primes and tildes. 

I. The tetrad vectors: 

lJ.L = o~, (4. la) 

ex = i (L~/P - 2i - 5 InP}r- l - iiL(LP;P 

- 2L - 5 InP}r- 2 + O(r-3), (4.3g) 

{3 = i (LP/P + '6 InP) r- 1 + O( r- 2), (4.3h) 

y=-iP;P+O(y-2}. (4.3i) 

IV. The tetrad components of the Weyl tensor: 

t/lo = t/l8r-5 + O( r- 6 }, (4.4a) 

t/ll = t/I~y-4 + O(r- 5), (4.4b) 

t/l2 = t/I~r-3 + O(r-4}, (4.4c) 

t/l3 = t/lgr-2 + O(r-3}, (4.4d) 

t/l4 = t/I~r-l + O(y-2}. (4.4e) 

V. With 

t/I~ - ~~ = - 2i Re('6W + LTV + iw - 2LWP/P} 

+ 4iLUO. (4.5a) 

(4.1b) t/lg = - '6R - LIl + 2LRP;P, (4. 5b) 

(4.5c) m a = wOif + ~allg:. 

II. The metric variables: 

U = (P/P}r + UO + O(r- l ), 

(4. lc) t/I~ = - R + 2RP/P, 
with 

W = 5L + P(I,LP-l r , 
(4.2a) R = 5N + LN - LNP/P + N2 - 2N5 InP, 

(4.5d) 

(4.5e) 
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N:=J~~51nP. (4. 5f) 

VI. The differential equations relating the t/l2 (these 
equations are found directly from the Bianchi identities, 
Eqs (4.5) of NP]: 

'6t/1~ = 3(P/P)t/Ig - ~g + L~~ - 3L(P;P)1/J~ + 4it/l~, 
(4.6a) 

'61/J~ = 3(P;P)t/I~ - V/~ + L~~ - 3L(P;P)t/lg + 3it/lg, 
(4.6b) 

'6t/1g = 3(P;P)t/I~ - ~~ + L~g - 3L(P;P)t/lg + 2it/lg, 
(4.6c) 

'6t/1g = 3(P;P)t/I~ - ~~ + L~~ - 3L(P;P)t/I~ + it/l~. 
(4.6d) 

[Equation (4. 6d) is identically satisfied with the use of 
Eqs. (4. 5b) and (4. 5c).] 

The variables t/lg, 1/J~, t/I~, lPg, and t/I~ are easily related 
to their Type I counterparts (symbolized by I) by 

1 1 1 I I 
",0 - ",0 - 4£0,,0 + 6L2'/,0 - 4L3 t/l0 + L4 t/l0 
'+'o-'+'o '+'1 '+'2 3 4' 

(4.7a) 

I J I I 
1/J~ = t/I~ - 3L1/Jg + 3L2t/1g - L3t/1~, (4.7b) 

1 I I 
t/I~ = t/I~ - 2L1/Jg + L2t/1~, (4.7c) 

(4.7d) 

(4.7e) 

5. DISCUSSION 

A result of this study of Type I and Type II coordinate 
systems in asymptotically flat space is a solution to the 
general spin coefficient equations (which are equivalent 
to the Einstein field equations) based on an asymptotical
ly shear free but twisting congruence of null geodeSics. 
This solution is obviously equivalent to the solution one 
would obtain by actually integrating the spin coefficient 
equations in a Type II system in asymptotically flat 
space. The condition for asymptotic flatness used by NU 
for a Type I system also applies for the Type II system; 
i.e. , 

(5.1) 

where the order symbols do not change when differentia
ted with respect to the non radial coordinates. 4 With this 
point of view the variable L is interpreted as the vari
able of integration associated with the r-1 part of the 
metric variable ~o [Eq. (4. 2d)]. The solution is given in 
terms of the basic variables Land P and the variables 
1f;8, 1f;~, and 1f;~ + 1f;~ which satisfy differential equations 
(4.6). Comparison with NU shows that L takes the place 
of a O as a basic variable. We interpret this to mean that 
the information or news carried by aO in the NU solution 
is carried by L for the same solution in a Type II coor
dinate system. 

We can define a subset of the asymptotically flat spaces 
as being asymptotically algebraically special if there 
exists a Type IT system such that 

(5.2) 
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[Note that this is more than the condition that t/l8 = 0 in 
(4. 7a) have a repeated root for L. L must also satisfy 
(3.3).] Algebraically special metrics when looked at 
asymptotically obviously have this form (though having 
this form is no guarantee of algebraic specialness) and 
thus satisfy (4.6) with (5. 2). More important, we now 
have the tool for taking the geometriC quantities associa
ted with the algebraically special metrics and interpret
ing them physically by studying them in a Type I system. 
This work is now in progress. 

APPENDIX 

We can find the transformation law of the spin coef
ficients by substituting the transformed tetrad, in terms 
of the original, into the definition of the spin coefficient; 
e.g., the transformation of a under (2.6) is given by 

a = IM;vmllrilv 

= (l + bin + bm" + bbn )'v(mll + bllll)(mv + bnv). 
Il Il ~ }l , 

Simplifying and using the definitions of the original spin 
coefficients, we obtain 

a = a + b(T + 2(3) + b2(/l + 2y) + b311 - Db - bM. 

where 
a 

D=lll-, 
axil 

a 
tJ. =nll

axil ' 

a 
o=mll-. 

axil 
(AI) 

The behavior of the spin coefficients and the t/I A under 
(2.6) (the null rotation about nil) is given by 

p = P + 2b a + bT + 2bby + b2 >.. + b2bll - 6b - b tJ.b, 
(A2a) 

a = a + b(T + 2(3) + b2(/l + 2y) + b311- Db - Mb, (A2b) 

K = K + b(p + 2E) + ba + bb(T + 2(3) + b2(rr + 2a) 

and 

+ b2b(/l + 2y) + b3>.. + b3bll- Db - bOb 

- b6b - bbtJ.b, 

T = T + 2by + b211 - tJ.b, 

~=/l+bll, 

~ = >.. + bll, 

II = II, 

i = 71 + b/l + b>.. + bbll, 

a = a + bA + by + bbll, 

5 = {3 + b (/l + y) + b 2 11 , 

y=y+bll, 

(A2c) 

(A2d) 

(A2e) 

(A2f) 

(A2g) 

(A2h) 

(A2i) 

(A2j) 

(A2k) 

E = E + b(a + 71) + b{3 + bb(/l + y) + b2 >.. + b2bll 
(A21) 

;J/o = t/lo + 4bt/l1 + 6b2t/12 + 4b 3t/13 + b4t/14, 

;j;1 = t/l1 + 3bt/l2 + 3b2t/13 + b3t/14' 

;j;2 = t/l2 + 2bt/l3 + b2t/14, 

(A3a) 

(A3b) 

(A3c) 
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.;J;3 = 1/13 + b1/l4' 

1/14 = 1/14' 

(A3d) 

(A3e) 

The behavior of the spin coefficients and the 1/1 A under 
(2. 7) (the null rotation about 11l) is given by: 

- -
p = p + aK, 

a = a + aK, 

-
K = K, 

T = r + aa + ap + aaK, 

(A4a) 

(A4b) 

(A4c) 

(A4d) 

ii. = /l + arr + 2a{3 + 2aaE + a 2a + a2aK + Ba + aDa 
(A4e) 

~ = x + a(rr + 2a) + a2(p + 2E) + a 3K + 5a + aDa 
(A4f) 

v = II + aX + a(/l + 21') + aa(rr + 2a) 

+ a2(r + 2(3) + aa2(p + 2E) 

+ a 3a + aa3K + Aa + aBa + a6a + aaDa, 

ii = rr + 2aE + a2K + Dfi, 

- -
{3 = (3 + aE + aa + aaK, 

(A4g) 

(A4h) 

(A4i) 

(A4j) 

.y = I' + aa + a({3 + r) + aa(p + E) + a2a + aa2K, 
(A4k) 

E = E + aK (A4l) 
and 

tJ;o = lj;o, 

tJ;1 = tJ;1 + atJ;o, 

:j;2 = tJ;2 + 2atJ;1 + a 2 tJ;o, 

~3 = tJ;3 + 3fitJ;2 + 3fi2tJ;1 + fi3tJ;, 
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Characterizing the state of a relativistic particle by a pair (x W~") of 4-vectors, we are led, in a natural way, to a group 
JC, of canonical transformations which includes the Poincare group and dilatations. The structure of the group and its 
induced irreducible unitary representations are explored. It is shown that JC, has a semisimple noncom pact subgroup 
which permits a systematic treatment of exact and of broken dilatation symmetry. The relevance of these ideas to scale 
dimension and to a new symmetry, scale conjugation, is discussed. As an application, a mass formula is derived from 
broken dilatation symmetry. 

1. INTRODUCTION 

The role of group theory and of algebraic methods in the 
description and exploitation of kinematical symmetries 
has a long history, both in the nonrelativistic and in the 
relativistic domain. On the other hand, it is hardly more 
than a decade since the importance of dynamical sym
metries and the usefulness of algebraic methods in this 
field has been realized. The prototype and ideal of a 
dynamical group is the non relativistic Galilei group 
which, apart from accounting for the kinematical sym
metries and the associated conservation laws, contains 
a full statement of the nonrelativistic dynamical law. 

There are many reasons which make it desirable to have 
a relativistic analog of the Galilei group or, even more 
generally, to construct a relativistic group which incor
porates dynamical space-time symmetries. In our 
opinion, the recent evidence that in the high energy re
gion, especially in inelastic collisions which probe the 
internal structure of hadrons, approximate dilatation 
symmetry is found, lends added impetus to the search 
for a relativistic dynamical space-time symmetry 
group. Broken dilatation invariance is clearly a dynami
cal symmetry, closely tied to space-time, yet not of a 
kinematical character. The major purpose of this paper 
is to show that it is possible to extend the (kinematical) 
POincare group in a manner which leads to a dynamical 
group that contains, in an essentially unavoidable way, 
dilatations. 

We first review the standard process by which one 
arrives at a nonrelativistic dynamical group. In non
relativistic physics, an "event" is labeled by the coordi
nates qk' k = 1,2,3, and a universal time t. We may rep
resent the state of a particle by qk' which then is to be 
considered as a function of t. The dynamical develop
ment of states is precisely given by specifying qk(t). The 
kinematics is described by the Euclidean groupl SO(3) lSi 
Tj, acting on the qk coordinate space. In order to have a 
dynamical group, we adjoin time translations (generated 
by H) and the nonkinematical velocity transformations 
(generated by Galilean boosts G). The latter connect 
the kinematical coordinates qk and the time t. In this 
manner we obtain the Galilei group 

9 4 = (SO(3) x Tn lSi (Tf x Tg). 

It is not difficult to adj oin further, nonkinematical trans
formations so as to obtain a bigger dynamical group, in 
fact one which contains dilat~tions. This group .JC4 ' or 
rather its central extension .JC 4 ' has interesting quantum 
mechanical applications. 2 

The situation is very different in relativistic physics. 
Here, an "event" is labeled by the world coordinates 
x)l, /1 == 0, 1, 2, 3, but there is no relativistic universal 
time. At first sight it therefore appears that we cannot 
have a group which acts on a manifold larger than the 

geometrical Minkowski space. The corresponding group 
of motions is the Poincare group SO(3, 1) lSi Tf, which is 
a purely kinematical group. 

However, closer inspection of the nonrelativistic case 
suggests a way to enlarge the Poincare group to a dyna
mical group, without reliance on some analog of univer
sal time. As well known, nonrelativistic dynamics may 
be formulated without reference to universal time if we 
adopt a "phase space" approach. In essence, this means 
that we characterize the states of a (noninteracting and 
nonconstrained) particle not by the values of the function 
qk(t), but rather, we define 

(dqk~ ~k = (Jt 
toO 

and label every possible state by the pair (xk' ~k)' Thus, 
a state corresponds to a point of the six-dimensional 
phase space. We than define for any pair A(x,~) and 
B(x,O of dynamical observables of Poisson bracket, 
setting 

[A B] = OA oB _ oA oB 
, p oXj O~j o~ oXj 

(summation over j). 
(1. 1) 

In particular, we have 

[Xk,Xlh = 0, (1. 2) 

The search for a dynamical group can now be formulated 
in the following fashion: We look for a (linear inhomo
geneous) group of canonical transformations 

which leaves (1. 2) invariant and which contains the kine
matical transformations x k ~ xl. == RkjXj and x k ~ xl. = 
x k + ak' In Appendix A we show that the smallest dyna
mical group so defined is precisely the standard Galilei 
group which, when realized on the phase space manifold 
(x, ~), assumes the form 

(1. 3a) 

(1. 3b) 

(1. 3c) 

(1. 3d) 

where R k' , ak' v k' T are the usual parameters of the res
pective s~bgroups of g 4' 
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These observations suggest an attempt for the formu
lation of a relativistic dynamical group. 

We base our future work on the following: 

Postulate: The state of relativistic particle is charac
terized by a pair (x

M
, ~M) of independent 4-vectors. 

This means that the state of a particle is represented by 
a point in an eight-dimensional "phase space." Corres
pondingly, the dynamical development is represented by 
a curve in the (x, 0 space. 

We may paraphrase this postulate by saying that the full 
description of a stale requires two Minkowski frames, 
E 3•1 (x) and E 3•1 (~). For brevity, we may refer to the 
first as the" external frame" and to the second as the 
"internal frame." In this language, then, x summarizes 
the data of the external state and ~ subsumes the infor
mation on the internal state. In a sense, we have a ver
sion of a bilocal theory, inasmuch as when we wish to 
formulate field theory in our E3.1(X) x E 3.1 (0 back
ground, the field functions I/I(x,~) will have to depend on 
both sets of coordinates. 

An alternative and equivalent viewpoint is to say that we 
look upon a particle as a vector field over a Minkowski 
space. That is, a particle is characterized by a world 
point x M and an at/ached vector ~M' In a sense, this 
characterization of a particle is not much more outland
ish than the accustomed picture of visualizing a particle 
by a point in ordinary space to which a "spin vector" is 
attached. Accordingly, it may be permitted to think of 
~/l an an "internal state variable." 

We are now prepared to construct a dynamical group, 
following the nonrelativistic analogy. We define, for a 
pair A(x,~) and B(x,~) of dynamical observables, the 
relativistic Poisson brackets 

[A B] _ aA aB _ aA aB 
, P-axpa~p a~paxp' 

(1. 4) 

and obtain 3 for x and ~, 

The dynamical group will consist of certain canonical 
transformat ions 

x/l-+x~(x,O, ~/l-+~~(x,~), 

which leave (1. 5) unchanged. 

2. THE DYNAMICAL GROUP Xs 

A. Construction of the group 

To start with, we wish to include Lorentz transforma
tions x/l -+ x~ = A/lpxP• But these leave (1. 5) invariant if 
and only if they are accompanied by a Lorentz transfor
mation ~/l -+ ~~ = A/lp ~P with the same set of parameters. 
The necessity of this pair of equal Lorentz transforma
tions is also evident from the fact that, because of our 
basic postulate, ~/l is a vector field over the Minkowski 
space. 4 We denote the generators of this Lorentz sub
group by J/lP' 

N ext, we consider translations x /l -+ X ~ = X Il + all' To
gether with ~Il -+ ~~ = ~/l' these form canonical trans
formations. The corresponding generators will be de
noted by P

Il
• 

At this point, we have nothing more than the Poincare 
group SO(3, 1) 0 TI. We are perfectly free to adjoin 
independent translations for the internal reference 
frame: the set x -; x~ = x/l' ~/l -+ ~~ = ~g + b/l of trans
formations leav~s (1. 5) invariant. If we denote the gene
rators of these new transformations by IIIl' the structure 
of our group is SO(3, 1) 0 (TI x T~). This group is 
purely kinematical because the effect of both P/l and II/l 
is to merely shift the curve of dynamical development in 
the (x,~) space parallel to itself [see Figs.la and Ib]. 
Another way to express this is to note that the Casimir 
invariants of this group are 

<3 1 =P/lP/l, <3 2 =II/lIIIl, 

<3 4 = W Jl WJl , <3 5 = V /l VJl, 

<3 3 =PJl II/l, 

<3 6 = W
M 

VJl, 

where WJl is the usual Pauli-Lubanski vector 

W =1.e Jvppa Jl 2 Jlvpa 

and V/l is its analog with P replaced by TI, i.e., 

V _1. JvPIIa /l - 2 EJlvpa . 

It then follows that the state functions (or, in a field 
theory, the field functions) are separable products,1/I = 
1/1 1 (p )1/12 (11), so that the system is essentially trivial: the 
internal and external state variables are unrelated. 

Thus, we now look for dynamical canonical transforma
tions which will have to mix the x and ~ variables, so as 
to give an intrinsic change in the dynamical development 
curve in the (x, 0 space. The simplest such one-para
meter transformation is given by xl' -+ x~ = x

ll 
- a~/l 

which, together with ~/l -+ ~~ = ~Jl' is indeed canonical. 
By denoting the corresponding generator by S, the group 
structure becomes 

g 5 = (SO(3, 1) x TV 0 (T! x T~). 

This, the smallest relativistic dynamical group, is a com
plete analog of the nonrelativistic Galilei group. It has 
been introduced by us earlier,5-S based on a different 

FIG. 1. 

(a) x 

(c) x 

(0) X 

(b) x 

c 

?
x'~ ~ 

c/x ., 
)el, ls' 

(d) x 

The action of transformations in the (x, 0 space. 
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line of argument and it was realized on a different car
rier space. 9 We showed7 that, remarkably enough, the 
Casi mir invariants of g 5 are 

8 1 = P"P" , 8 2 = W" W", 

i.e., precisely those of the Poincare group. 

At this point we observe that there is no reason to 
single out x over ~,so that we are naturally led to con
sider the analogous transformations x" -7 x~ = X I!' 

~" -7 ~~ = ~" + ax", This one-parameter group (whose 
generator we denote by C) is indeed a canonical trans
formation. The effect of the Sand C transformations on 
the dynamical state development curve is illustrated in 
Figs. 1c and 1d. However, the set of canonical transfor
mations generaled by J"p'P/l,IT",S,and C does not show 
closure: We do not have a group. It is not difficult to 
prove that, in order to complete the group structure, we 
must add yet another one-parameter set of canonical 
transformations which is given by x" -7 x~ = el-.x" and 
~" -7 ~' = e- I-.~". We realize that these transformations 
(whos: generator will be denoted by D) are precisely 
dilatations on the external variable x, accompanied by 
corresponding" contractions" on the internal variable ~. 
It is striking how the demand of having a closed group 
of canonical transformations leads, in a natural and un
avoidable manner, to the inclusion of dilatations. The 
effect of D in the (x,~) space is illustrated in Fig.1e. 

B. Structure and basic properties of Xs 

We now summarize the features of the group of canoni
cal transformations which we arrived at in the above 
manner. 

The carrier space10 is E 3,l (x) X E 3.1 (~) and the defining 
transformations are 

J"p: 
lX~ =A"px

P
, 

. ~~ = A"p~P, 
(2.1a) 

P,,: t~ :X/l +a", 

~" - ~/l' 
(2.1b) 

IT" : r~ = x"' 

~~ = ~" + b", 
(2. lc) 

S: t~ =x" -a~", 
~~ = ~/l' 

(2. ld) 

C: r~ ==x", (2.1e) 
~~ == ~" + ax", 

lX' == el-.x D: /l ", (2.lf) 
~~ == e-I-.~Il' 

Performing the transformations in the order J, IT,P, S, 
C, D, these formulas yield, in a condensed form, 

x' = eA{A(x - a~) + a - ab}, 

~' = e-I-.{A[(l - O'ag + O'x] + (1 - aa)b + aa}. 

(2.2a) 

(2.2b) 

Denoting such an arbitrary transformation by the sym
boll! 

g = (>..,a,a,a,b,A), 
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we easily find the composition law 

g'g = (>"',a',a',a',b',A')(>..,a,(J,a,b,A) 

= (A' + A + log(1 - e-2 I-.a a '), 

(1 - e-2 I-.aa') (a + e 2 1-.0" - 0'0' 'a'), 

(a + e- 2 I-.a' - e-2I-.O'aa')/(l - e- 2AO'a'), 

A'a + el-.b'(J + e-I-.a ' - e-I-.O'aa', 

A'b + el-.b' - e-I-.O'a"A'A). 

The inverse element of g is then 

g-l == (- A + log(l - O'a), - e-2 1-.0' (1 - O'a), 

- e2l-.a(1 -aa)-l,- e- AA-1a + e AaA-1b, 

(2.3) 

-e-I-.(1-O'u)A-1b -e-I-.O'A-1a ,A-1}. (2.4) 

Thus, the transformations indeed close to form a group 
which we shall denote by JC 5 • It is interesting to note 
(see Appendix B) that this group is the natural relativis
tic generaljzation of Hagen's group JC4 whose central 
extension JC 4 he called the "conformal Galilei group" 
(cf. Ref. 2). 

From the composition law (2.3) we obtain, by standard 
methods, the following Lie algebra: 

[J"v,Jpo ] = i(gvpJ"o-g"pJvo-g"oJpv +gvoJp,,)' (2.5a) 

[Jpo'P,,] = i(glloP p -g/lPP 0)' (2.5b) 

[Jpo,IT/l] == i(g/loITp -g"pIT o)' (2.5c) 

[P",IT v ] = 0, (2.5d) 

[C,P,,] = - ill/l' 

[D,P,,] = - iP", 

[C,IT,,]=O, 

[D, IT,,] = ill", 

[S,C] == iD, [S,D] = 2iS, [D, C] = 2iC, 

(2. 5e) 

(2. 5f) 

(2. 5g) 

(2. 5h) 

(2. 5i) 

(2. 5j) 

At this point we observe that if we introduce the linear 
combinations 

I1=iD, 12 =i(C+S), 13 ==i(C-S), (2.6) 

then (2. 5i) can be rewritten as 

Thus, the dynamical canonical transformations gene
rated by S, C, D form a noncompact SO(2, 1) [or, equiva
lently, SU(l, 1)] subalgebra.12 

We can now exhibit the structure of the (covering of) the 
dynamical group JC 5 as 

JC 5 = (SL(2, C)J x SU(l, l)l) 0 (Tf x T~). (2.8) 

Thus, the maximal Abelian subgroup (radical) is the 
direct product of the" external" and "internal" transla-
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tion group, and the other factor in the semidirect product 
decomposition is the direct product of a standard kine
matical Lorentz and a purely dynamical SU(l, 1) group. 
The latter contains the dilatations. The aesthetic aspects 
of this structure are indeed pleasing.13 

In order to write down the Casimir invariants of Je5 , it 
is useful to introduce the anti symmetric Lorentz tensor 
R ltV defined as 

(2.9) 

It is then found that there are two Casimir invariants 
which can be written in the form 

~l == - ~RI'J)RI']), (2.10a) 

~2 iJIl])Rltv + Sill-JIlt + CPIJPIl -DPI'IlJl. (2.10b) 

We may say that (2.10a) gives the equation of the orbits 
(see next subsection) in the carrier space of the radical. 
Explicitly, we have 

(2.11) 

C. Representations of X 5 

In order to classify the irreducible unitary representa
tions of our group, we use the method of induced repre
sentations.14 

The semidirect product structure (2.8) is realized by 
the automorphisms 

n -7 th (n) := hnlrl, 

where 

n EN == T! x T~, h E H == SL(2, C)J x SU(I, 1)1' 

The irreducible unitary representations of N are, of 
course, one dimensional and we denote them by 

(a,blp,1T) == exp[i(ap + b1T)], 

where the pair p, 1T of vectors is referred to as the 
character of the representation. The set (ab Ip1T) of all 
representations is the character group N. For each 
h E H, tile automorphism th defines a one-to-one map
ping of N onto itself. If, under th , a -7 a' and b -7 b " then, 
using (2. 3), we find that 

(a 'b'lp1T):= (ablp'1T /), 

where 

p' == eAA-lp + e- AaA- l 1T, 

1T' = e-A(l - Q'cr)A-l1T - eAcrA-lp. 

One easily checks that 

(pt1T/)2 - p,21T '2 = (p1T)2 _ p21T2, 

(2.12) 

so that [by comparison with (2.11)] we verified that th 
defines the orbits in N. The little groups of Je

5 
are 

those subgroups of H which leave a given point of the 
orbit fixed, Le., for which in (2.12) we obtain pI == p, 
1T' = 7r. To find the possible little groups, we have to 
consider five special cases.15 

Case 1: p = 0,1T == 0. The little group is SL(2, C)J x 
SU(l, 1)1 itself. For a maximal set of commuting opera
tors we may choose the union of the standard maximal 
set for SL(2, C) given by16 

N2 =='!J Jill) 
2 I-W , (2.13) 

and T3 

and of the standard maximal set for SU(I, 1) given by17 

12 == If - 1~ + 1~ and 12 , 

Thus, the maximal set is L: = {T2 - N2, TN, T2, T 3 ,12 ,12} 

and the canonical basis functions are labeled as 

(2.14) 

where the upper labels fix the representation and the 
lower ones are state labels.18 Note that ~1 = 0, ~2 = O. 

Case 2: p = 0,1T 'i" 0. We have to further distinguish 
the subcases where 1T2 > 0, 1T2 < 0, 1T2 = O. We then 
find the little groups 

, SU(2} 

SO(l,I}[x J~U(l,l) 

( E(2) 

if 1T is timelike, 

if 1T is spacelike, 

if 1T is lightHke. 

Here SU(2), SU(I, 1), E(2) are the familiar little groups 
that occur for the Poincare group19 and SO(I, 1)[ is the 
(noncompact) one-parameter group generated by 1- == 
12 - 13 S. If we define 

(2.15) 

then Vil Vii is an effective Casimir operator for the Poin
care factor and V 3 generates the SO(2) subgroup of the 
relevant Poincare little groups. Furthermore (since 
p :::::: a), Eqs. (2. lOa), (2. lOb} tells us that now the Casimir 
operator ~l = 0 and 

(2.16) 

For the maximal commuting set we can now choose L: == 
{~2' V2, V3 , nl-J and the canonical basis is 

(2. 17) 

Case 3: p '" 0,1T = O. Similarly to the previous case, 
we find the little groups 

~ SU(2) 

J~(I, 1) 

(E(2) 

if P is timelike, 

if p is spacelike, 

if p is lightlike, 

where SO(I, 1)1+ is generated by r == 12 + 13 == C. With 
the usual definition 

W" !.€ JVppo 
,. 2 /-lvpa (2.18) 

of the Pauli-Lubanski vector, Wp Wil and W:{ become 
state labels. Furthermore, ~l = ° and 

(2.19) 

We choose the maximal set L: = {~2' W2, W 3,p,.,}, and 
the canonical basis is 

(2.20) 

Case 4: p '" 0,1T 'i" 0 but p and 1T are parallel. We 
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write 11 ~ = dp ~ and so 11 can be suppressed in the follow
ing. The little groups are 

~ SU(2) 

SO(l, l)y x ) ~U(l, 1) 

{ E(2) 

if p and 11 are timelike, 

if p and 11 are spacelike, 

if p and 11 are lightlike, 

where now SO(l, l)y is generated by 

Y = 21 _ (1 + d 2
) I _ (1 - d 2

) I 
- 1 d 2 d 3' 

For state labels, we can choose either W2 and W 3 or 
V2 and V 3 (because p and 11 are parallel); for definite
ness we take the former. We have e1 = ° and 

e 21/1 =P2(d2S + C -dD)1/I = (SIP + Cp2 -DPll)1/I. 

(2.21) 

We choose the maximal set ~ = {e 2, W2, W 3 ,P
1
J, and 

have the canonical basis 

(2. 22) 

Case 5: p "" 0,11 "" 0, and p and 11 are not parallel. 
The little group is the trivial identity group eJ x e1 = e. 
Now e1 "" 0, e2 "" ° and the maximal set may be taken 
to be ~ = {e1 , e2'p~, ll~}, to which corresponds the 
canonical basis 

(2.23) 

We systematically obtained in the above manner all five 
possible cases of induced representations. However, 
from the mathematical point of view, the Cases 2,3, and 
4 are equivalent. This is formally evidenced by the fact 
that the little groups for these cases are isomorphic to 
each other. The reason for this equivalence is that, as 
seen from (2.12), a pure C-transformation (.1\ = 1, 
A = u = 0, a "" 0) can transform a pair (p = 0,11 "" 0) 
into a nonvanishing but parallel pair (p = a11, 11) and vice 
versa. Similarly, a pure S transformation can transform 
a pair (p "" 0,11 = 0) into the pair (P,11 = up) and vice 
versa. Thus, in effect, we have three classes of irre
ducible unitary representations20 : 

Class I : Case 1 : e1 = 0, e2 = 0; 

Class II : Cases 2,3,4: e1 = 0, e2 "" 0; 

Class III: Case 5 : e1 "" 0, e2 "" 0. 

Class I representations do not describe particles, be
cause the momentum is identically zero. 

Class II representations (as exemplified by the detailed 
consideration of Case 3) satisfy all requirements that 
one would expect from a representation corresponding 
to an exact symmetry. Since the labeling set of opera
tors is ~ = {e2 ; W2, W 3' P ~}, we see that the only con
tinuous state label is the momentum vector p. We have 
the usual spin and spin component state labels21 pro
vided by W2 and W 3' The value of the Casimir invariant 
e2 = CP2 (which can take on any real value) is closely 
related to the squared mass. Finally, as will be seen in 
Sec. 4A, the Hilbert space which carries the represen
tations corresponds to a meaningful realization of exact 
dilatation symmetry. It should be observed that spin 
(corresponding to W2) is not a Casimir invariant, but is 
only a state label, which means that any fixed represen-
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tation will contain all possible spin values, both integral 
and half-integral. In other words, each representation 
can be reduced into subrepresentations with arbitrary 
given mass and spin. 

Class III representations involve, apart from p, the state
variable 11 which has no direct physical interpretation, 
and the same holds for its Casimir invariants. Further
more, these representations cannot account for particle 
spin (even though it is not difficult to see that they yield 
total angular momentum labels22 ). Finally, as will be 
discussed in Sec. 4A, the unrestricted Hilbert space of a 
Class In representation corresponds to broken (rather 
than exact) dilatation symmetry. In spite of their un
suitability for accommodating a classification scheme 
for exact symmetry, the representations of Class In are 
far from being useless, and in fact they must be used 
when questions of broken symmetry are investigated. 
We shall come back to this point at the end of Sec. 4A. 

After having familiarized ourselves with the major phy
sical aspects comprised by our group, we now turn our 
attention to its possible applications to dilatation phy
SiCS. 23 

3. DILATATIONS AND Xs 

A. Tensor-spinor calculus and scale dimension 

One of the captivating features of our JC s group is that 
dilatations occur as pari of a semisimple subgroup, viz., 
of SU(l, 1)1 generated by D, S, C. This fact permits us to 
establish a classification scheme relative to dilatation 
behavior which will resemble an isospin classification 
scheme. We point out that when dilatations are treated 
in the usual framework of the conformally extended 
Poincare group (sometimes called the Liouville group), 
there is no analogous treatment available. 

Following the well-known pattern, we must study the (non
unitary) finite-dimensional representations of SU(l, 1)[. 

It will be convenient to introduce the notation 

GO = D/2 = 11' G+ = C = 12 + 13 , G- = S = 12 - 13 , 

(3.1) 

Here G+ and G- are raising (lowering) operators for the 
eigenstates of GO. We also define a" spherical vector" 
G;, a = 0, + 1, - 1, by setting 

G~ == GO = D/2 = 11' 

G:1 == 2- 1 / 2 G+ = 2-1 / 2 C = 2-1 /2(12 + 13 ), (3.2) 

G~l == 2-1 / 2 G- = 2-1 /2 S = 2-1 / 2 (12 -13 ), 

The commutation relations are 

(3.3) 

and the Casimir invariant of SU(I, 1)[ can be written as 

12 = (G~)2 - t(Gh + G~1)2 + HG:1 - G~1)2, (3.4) 

which is formally the same relation as one has for the 
Casimir invariant of SU(2) in terms of spherical com
ponents. By definition and in consequence of (3.3), the 
transformation law of an arbitrary spherical vector V& 
is given as 

[G~, Vhl = ± iV;l' 
[Gh, V~] = =F iV ±1' 

[Gh, Vhl = =F iV~, 

[G~, V~l = 0. 
(3.5) 
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One advantage of using spherical vectors is that each 
component G~ spans a one-dimensional (nonunitary) rep
resentation for the Tf dilatation subgroup generated by 
11 == GO. Because of its obvious physical importance, we 
study these representations. 

The (nonunitary) representations of Tf have the form 

g(X): X -. e il A./2x, (3.6) 

where X is the parameter of dilatation and 1 = 0, ± 1, ± 2, 
.. '. If X is a tensor (or spinor) operator belonging to 
the representation of Tf characterized by l, then, 
clearly,24 

(3.7) 

or, in infinitesimal form, 

[D,X] = il~: (3.8) 

This reveals the meaning of l: the integer 1 is precisely 
the scale dimension of the dynamical observable X. 
Furthermore, since D = 211 = GB, it is clear that for any 
tensor (or spinor) operator X~ of SU(l, 1)1 the spherical 
component subscript a is exactly one-half of the scale 
dimension of x~. A further important remark is that, in 
general, the (physical) scale dimension is different from 
the naive (geometrical) dimensiono 25 

We now study the tensor (spinor) transformation be
havior of the generators of JC5 under the SU(l, 1)1 sub
group. We find that 

is a vector, as already stated. 

(b) 

(c) 

is a fundamental spinor and 

- ( ) (1/2 112) u= PIl,-QIl = K1/2,-K_1I2 

is its conjugate (contragredient) spinor. Observe that 
UU = 0, as it should be. From the explicit form of u and 
G& we get 

[ 1 1/2] 1 0 1/2 [1 1/2] 
G o,K±1/2 = ± "2ZK±1/2' G±1,K±1/2 = 0, 

[ 1 1/2] (01 In 1/2 G ±1,K~1/2 = =F Z ,,2 )K±1/2' 

(3.9) 

which, then, determines the transformation law for an 
arbitrary fundamental spinor V~/2 (a = ± 1/2). 

We can now construct tensor (spinor) operators in the 
enveloping algebra. The simplest examples are collect
ed in Table I. 

One implication of this classification scheme is that 
when, on physical grounds, we know that a certain dyna
mical observable has a definite scale dimenSion, we can 
expect that it will have "partners" of different scale 
dimension, together with which it forms an SU(l, 1)1 

TABLE I. Some simple covariants in the enveloping algebra. Sote: AJ3 means 
the Hermitian product HA,B}o 

SU(1,I)/ Lorentz 
trans- trans-
formation Scale Scale formation 

Symbol Definition property dimension parity property 

vg R/lu::O:: PIlIT u -P)l jJ 
scalar 0 

antisymrn. 
tensor 

V' ITj.lIT v 
+. 

·1 symmetric 
V' 1//2 (P,lI" + P )1,) vector + 

0 tensor 
V' -1 p,p" -2 

v' /2 gIJ - ~12JIIl +1 not +1/2 i spinor vector 
1"/2 - .5.!1 1l + ~ I!!'1l -1 applicable 

-112 

V:£72 t::.W +3 

V;[~2 CJ" +D_lI' +1 not 
~ spinor vector 

V 3 /2 
SJI" + ~Q?jJ -1 applicable 

-112 
V 3 / 2 

-3/2 &" -3 

tensor (spinor). Application of these ideas to currents 
are planned to be discussed in a later publication. 

B. Scale conjugation 

Inspection of the Eqs. (2. 5a)-(2. 5j) reveals that the Lie 
algebra of JC 5 admits the following, rather remarkable 
involulive outer automorphism: 

P~ -tIlIl, IlIl-tPIl, S-t-C, C-t-S 
, (3.10) 

D -t - D, J~v -t J ilv ' 

We shall call this new symmetry transformation a scale 
conjugation, because of its strong resemblance to charge 
conjugation (or G-parity) for isospin multiplets, as will 
transpire below. Scale conjugation (3.10) can be repre
sented by a unitary and self-adjoint operator26 ::I): 

::I)P
Il

!lJ1 = Il
ll

, 

::I)C ::1)-1 = - S, 

::I)rr~!lJ1 = P
Il

, 

::I)D ::1)-1 = - D, 

::I)S::I)-l = - C, 

::I)J ::1)-1 = J (3.11) 
IlV IlV' 

Since ::1)2 = 1, the possible eigenvalues of ::I) are ± 1. We 
shall call the eigenvalue of ::I) scale parity 0 Equation 
(3.11) shows that D has negative scale parity.27 Con
sequently, only those dynamical observables can have a 
sharp scale parity which have zero scale dimension. In 
general, ::I) causes transitions within SU(l, 1)1 multiplet 
members. For example, the neutral component GB of 
the vector G& has negative scale parity, and, under ::I), 
we have the transitions G;l -t - G!l and G!l ---> Gh. 
Following the convention for the classification of inte
gral isospin meson multiplets relative to G (or C) 
parity, we may say that G~ has negative scale parity. 
On the other hand, the vector V~ of Table I has positive 
scale parity, since under ::I), we have VB -t VB (and 
Vh ~ V!l)' SU(1,1)1 scalars have always sharp 
scale parity (because they have zero scale dimension). 
For example, the Casimir operator 12 of SU(l, 1)1 has 
positive scale parity, as can be seen from Eq. (3. 4). On 
the other hand, the scalar V8 = R llv of Table I has nega
tive scale parity. We observe that the Casimir invar
iant e1 of JC 5 has positive scale parity (Le., it is also 
an invariant for the extended group), but the second 
Casimir invariant e2 has negative scale parity (so that 
it is not an invariant for the extended group). 

It is interesting to note that in the usual treatment of 
dilatation symmetry within the framework of the con
formal group, there is no room for a scale conjugation 
automorphism.28 Further exploration of our ::I)-sym
metry is relegated to a later study. 

J. Math. Phys., Vol. 13, No. 12, December 1972 



                                                                                                                                    

1858 ROM AN, A G HAS S I, AND H U D D L EST 0 N 

4. SOME ASPECTS OF BROKEN SCALE INVARIANCE 

A. Scale invariant subspaces 

Whereas the group JC 5 incorporates dilatations, it by no 
means implies exact scale inuariance. In fact, as we saw 
in Sec. 2A, 5 and C generate dynamical development and, 
since D does not commute with these operators, it can
not be a "constant of motion". Thus, we have a broken 
symmetry, and it becomes necessary to find conditions 
for a meaningful implementation of exact dilatation sym
metry. This means that we must search for a subspace 
of the Hilbert space of states which is left invariant 
under D. Naturally, we must have this subspace in
variant also under the whole kinematical subgroup, which 
is 5L(2, C)J @ (Tf x T~). A subspace is selected by a 
subsidiary condiLion n1j; = 0 and, to have this subspace 
invariant under the transformations listed above, we 
must have 

n(Dl/I) = 0, n(II~1j;) = O. 

These conditions are met if we find an operator n such 
that 

[D,n] = c 1n, [J~v,n] = c 2n, 
[II~,n] = c 4n, 

[PI" n] = c 3n, 
(4.1) 

where some of the constants ck may be zero. Inspection 
of our Lie algebra (2.5) reveals that p2, II2, or PII are 
three possible basic choices for n to satisfy Eq. (4.1). 
Correspondingly we have: 

Choice (a): The subsidiary condition is p21j; = O. 
This is not unexpected since it is well known that the 
dynamics of massless particles obeys scale invariance. 
The novelty is that, as easily seen, the subspace is also 
invariant under 5. 

Choice (b): The subsidiary condition II21j; = 0 gives 
the interesting result that, in our framework, we can 
have scale invariance for massive particles too. It is 
also seen that this subspace has the additional invar
iance under C. 

Choice (c): The subsidiary condition PII1j; = 0 also 
permits scale invariance, but this possibility is not 
attractive because neither of the dynamical development 
operators C or 5 leaves this subspace invariant. In addi
tion, the condition PII1j; = 0 imposes an undesirable kine
matical restriction among the components of P and II: 
For example, if P is timelike, II is constrained to be 
spacelike. 

We remark here the following. The Class II representa
tions of JC 5 are already so restricted that we have exact 
scale invariance. This is so because in this class e1 = 
- iR 2 = 0, so that n = R 2 trivially satisfies the require
ments of Eq. (4. 1). In contrast, the representations be
longing to Class III are precisely those which permit the 
study of symmetry breaking in massive hadron systems. 

Here the exact scale invariance conditions are not auto
matically satisfied, and we select the exactly invariant 
reference system by imposing the condition II21j; = O. In 
the next subsection we shall show how broken symmetry 
arguments may lead to a mass spectrum. 
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B. Mass spectrum from broken symmetry 

In the real world, the symmetry of JC5 is certainly badly 
broken by the dynamics of interactions. Consequently, 
the squared mass operator ~2 cannot be an invariant of 
JC 5 . But we expect that part of the 5U(1, 1)/ symmetry, 
namely dilatation invariance, survives in first approxi
mation. This means that we can write29 

~2 = A(l + yB), (4.2) 

where A, the unperturbed central squared mass, and the 
constant y depend only on the Casimir invariants of JC 5 ' 
whereas B is a component of a tensor operator of 
5U(1, 1)/ which is invariant under the Tq dilatation sym
metry subgroup. Moreover, B must be invariant under 
the entire kinematical subgroup 5L(2, C)J @ (Tf x T~). 
Thus,B should be constructed from Jl'v,PI',III' ,it should 
have zero scale dimenSion, but it should not be invariant 
under 5 and C. The simplest choice for B is to take the 
neutral component of an 5U(1, 1)/ vector. It is easily 
seen that the lowest order polynomial in the enveloping 
algebra which meets these requirements for our vector 
operator is given by30 

Zl = 2- 3/2 J J"SII2 - 2-1/2 J JSI'II"II 
+1 as al' B' 

Zl =l.J J"SPII-l.J JBI'(paII +IIap) o 2 aB 2 al' B J3 ' (4.3) 

Z~l = 2-3/2JaBJaBp2 - 2-1/2 Jal'JBl'paP B, 

and, in accord with the preceeding arguments, we take 

B = Zl = l.J JaBPII - l.J JBI' (pall + IIap ) (4.4) o 2 aB 2 al' B J3 • 

We now want to calculate the expectation value (~2). In 
view of the discussion given at the end of subsection 4A, 
we select a representation of Class III and (so as to 
have, in our approximation, exact dilatation symmetry) 
take the subspace for which the II 21j; = 0 condition is 
met. 

To do the calculations, it will be necessary to use a 
basis other than the canonical basis given by Eq. (2. 23). 
The new basis can be obtained by conSidering the chain 

JC 5 :J (5L(2, C)J x rq) @ (Tf x T~) :J 5L(2, C)J x Tq 

:J 5U(2h :J 50(2) T 
3 

and taking for labels the Casimir operators in each link 
of the chain. 31 We thus get32 the new maximal com
muting set 

~' = {e1, e3, WV,P2II2,PII,D,JJ,JJ*, T2, T 3}' 

where 

The basis corresponding to ~ I is unitarily equivalent to 
the original basis which corresponds to ~. 

We are now prepared to calculate (B) for states in our 
subspace. We take a rest frame in which P = (Po; 0, 0, 0) 
and observe that, since we have the subsidiary condition 
II21j; = 0, Eq. (2.11) gives e 1 = (PII)2, so that further, 
in our rest frame, 

PII = Poll 0 = Pol II I =..re;.. 

With this in mind, an elementary calculation gives33 
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At this point we recall34 that 

-21 J J~V == T2 - N2 = k 2 + c 2 - 1, 
~v 

.!€ JrVJPO == ToN = 4ikc 
2 Ilvpa ' 

where, for the principal series, 

k = o,t,l,i,'" and - co < ic < + co, 

but we must take c = 0 so as to have normalizable 
states. Then (4. 6b) gives 

ToN = O. 

(4.6a) 

(4.6b) 

(4.7) 

We further recall that in the rest system T becomes the 
spin, so that 

T2 = s(s + 1), (4.8) 

where s = k,k + I,k + 2,···. We need one more calcu
lation to evaluate (4.5). With Vr = t€~vpoJvPllo we have, 
by symmetry, V~II~ = 0, and since II islightlike, this 
implies the parallelism or antiparallelism Vr = fll~. In 
detail, this gives 

Tllo +N x lI=fll and Toll = - fila, 

which, using (4.7), leads to 

Noll = 0 and T x II = - Nllw (4.9) 

Substituting these results into (4.5) and using (4. 6a) 
(with c = 0), we eventually get 

(B) = .)8 1 [2s(s + 1) - ik 2 + 2], 

so that, finally, our broken symmetry mass formula (4.2) 
can be written in the form 

(4.10) 

where Q' and {3 are (unknown) constants. 

To test this formula, it must be remembered that approxi
mate dilatation invariance is presumably a reasonable 
approximation only at higher energies which, when visu
alizing elementary particles as excited dynamical sys
tems, implies that our formula may be reasonable for 
higher mass level sequences, and cannot shed light on 
the lower sequences (like the familiar octet or decuplet). 
It appears35 that the first nucleonlike higher mass spin
tower starts with the N"(1780) and N(1860) states (s = t 
and i, respectively). Assuming that k = t for these, and, 
using their masses as inputs, we determine the para
meters to be Q' = 3.1 and {3 = 0.1 BeV2, respectively. 
Table II shows the numerical results obtained with these 
input data, for a series of k = t nucleon states, then for 
a k = % sequence36 of .o.-like states, and, finally, for a 
k = 1 meson tower. 37 Even though there are several 
reasons why one should not take a broken symmetry 
mass formula and its confrontation with the often hazy 
data too seriously, we find it rather impressive that, for 
this wide variety of quantum numbers, the agreement 
with experiment is extremely good. It is also worthwhile 
to note that, as expected, the accuracy of the formula 

TABLE II. Mass levels from broken symmetry. 

Error 

Symbol (and (1Il 2 ) 1Il 2 Stand. 
resonance channel) k calculated experiment dey. '10 

N"(1780) Pi1 input 3.17 ± 0.51 
N(1860) P 13 input 3.46 ± 0.57 
See Footnote a 3.98 See Footnote a 
1,1990) F 17 4.67 3.96 +18 

N(2220) H 19 5.57 4.93 ± 0.65 +13 
N(2650) " 6.67 7.02±0.95 - 5 

T 

l,(1690) P:l3 3.31 2.86 +16 
t.(1890) F35 3.81 3.57 ± 0.49 + 7 
t.(1950) F37 4.51 3.80 ± 0.39 <2 +18 
See Footnote b ~ 5.41 See Footnote b 
t.(2420) ii 6.51 5.86 ± 0.75 <1 +11 
t.(2850) ~ 7.81 8.12±1.14 - 4 

R(1750) or n[](1764) 3.23 3.09 + 5 
5(1930) 3.68 3.72 - 1 
X-(2086) ? 4.23 4.37 - 3 
T(2195) ? 5.03 4.84 + 4 
X-(2500) I ? 

\ 6. 25 i - 3 
or I . 6.03 - to 

1-'(2375) I 5. 57 ± 0.07 I + 8 

a There is no ,V state with ~ in this region, but there is the A(1815).F 05 with 
~m2 = 3.30 ± 0.15 and the 1::(1915) with1ll2 = 3.65 ± 0.13. The expected octet 
partner N would fit well the calculated value. 
b There is no ~ known WIth ~ +, but there is the spin ~'Y(2250) with ~2 = 

5.06 ± 0.37, which, if a partner of the mlssing ~,fits well the calculated value. 

seems to improve as we go to higher masses, say to 
above 2000 MeV. 
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APPENDIX A: THE GALILEI GROUP IN PHASE SPACE 

The standard defining transformations of the Galilei 
group 9 4 are given on the E 3(q) x E1 (t) carrier space 
as follows: 

l
q~ = Rkq, 

J: J J 

t' = t, 

lq;. = qk + a", 
P: 

t' = t, 

H' jq;' = q", 
./ t' = t + 7. 

Performing the transformations in the order J, G, P, H 
we have, in a condensed form, 

q' = Rq + vt + a, 

t' = t + 7. 
(AI) 

Denoting a group element by g = (T, a, v, R), we easily 
obtain the composition law 

g'g = (7' + 7,a' +R'a + 7V',V' +R'v,R'R). (A2) 

On the other hand, from the transformations (1. 3a)-
(1. 3d), defined on the carrier space E 3(x) x E3(~)' we 
find, using the same order of transformations as above, 
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x' :::::: R(x - T~) + a - TV, 

~'::::::R~+v. 
(A3) 

H we compute from here the composition law, we get 
precisely (A2). This proves that the two groups, defined 
on different carrier spaces, are actually isomorphic. 
Thus, the group of canonical transformations (1.3) in the 
phase space is simply another realization of the familiar 
Galilei group. QED 

APPENDIX B: A NONLINEAR REALIZATION OF Xs 

Let E 3,l (x) be the usual Minkowski space and let E1 (u) 
be a one-dimensional space. Consider the following 
transformations on E3,l(x) x E1(u): 

J :r~:::::: Al'p
xp

, 
I'P u' == u, 

(Bla) 

lX' ::::::x +al' p. I' I' (BIb) 
1" u' ::::::u, 

r' ==X 
+ bl'u, II: I' I' (Blc) 

I' u' ::::::u, 

s: lX~ ==xl" (BId) 
u'::::u+cr, 

c: ~ x~ :::::: xl'/(1 - au), 

u' :::: u/(1 - au), 
(Ble) 

I In this paper we denote direct products of groups by X and semidirect products 
byC!':!. 

2 See C. R. Hagen, Phys. Rev. D 5, 377 (i 972); and also P. Roman, J. J. Aghassi, 
R. M. Santilli, and P. L. Huddleston, "Nonrelativistic composite elementary 
particles and the conformal Galilei group," Nuovo Cimento (to be published); 
as well as U. Niederer (Zurich U.), Preprint, March 1972. 
3Throughout this paper, goo = I, gkk = - I, gkl = 0 (k fl). 
• A further comment on this point will be given in Footnote 13. 
S J. J. Aghassi, P. Roman, R. M. Santilli, Phys. Rev. D 1,2753 (1970). 
6 J. J. Aghassi, P. Roman, R. M. Santilli, J. Math. Phys. (N.Y.) II, 2297 (1970). 
7 J. J. Aghassi, P. Roman, R. M. Santilli, Nuovo Cimento A 5,551 (1971). 
• R. M. Santilli, Particles Nuclei 1,81 (1970). 
9 In Our earlier work, we actually concentrated on the central extension Ss of 
this group. These efforts met with limited success. 

lOIn Appendix B we give another, nonlinear realization of the group, on a smaller 
carrier space. 

I I The unit element is (0,0,0,0,0, I). 
I 2 This is analogous to the situation in the nonrelativistic JC. (and JC.) group, as 

was noticed originally by Hagen, Ref. 2. 
13 Forgetting the manner in which we arrive at JCs as a group of canonical trans

formations, one may wonder whether a doubling of the Lorentz part (one acting 
on x, one on~, independently) would serve a purpose. However, an elementary 
calculation with Jacobi identities reveals that then SUe I, I) must commute with 
the rest of the group (which would consist of the two Lorentz and the two trans
lation groups), so that we would have an entirely trivial structure, without any 
link to dynamics. 

14For a simple account of this method, see, for example, G. W. Mackey,Induced 
representations of groups and quantum mechanics (Benjamin, New York, (968), 
or the brief summary by G. W. Mackey, Group representations in Hilbert space, 
which is the Appendix in I. E. Segal, Mathematical problems in relativistic 
physics (Amer. Math. Soc., Providence, R. I., 1963). 

I sThe procedure to be followed is a combination of the standard method for find
ing the little groups of the Poincare group [E. P. Wigner, Ann. Math. 40, 149 
(I939)] and of the work of E. Inonii and E. P. Wigner, Nuovo Cimento 9, 705 
(1952), in which they obtained the little groups of the nonrelativistic Galilei 
group S4' Our results resemble closely those of the latter paper. 
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D: lX~:::::: eAxl" 
u' :::: e2Au. 

(B1£) 

Performing the transformations in the order J, II, P, S, 
C, D, we get, in condensed form, 

,_ A(Ax + bu + a) x - e , 
1 - a(u + cr) 

(B2) 
u' - e2 A ( U + cr \ 

- 1 - a (u + cr)) • 

Denoting a group element by g :::::: (A, a, cr, a, b, A) and 
computing from (B2) the composition law, we get pre
Cisely the same result as given by Eq. (2. 3) for the com
position law of the group defined on E 3,l (x) x E 3,l m by 
the Eqs. (2. la)-(2. 1£). Thus, the group defined by the 
transformations (Bla)-(Blf) is isomorphic to our group 
JC 5 • But the realization of JC 5 on E3 1 (x) X E1 (u) is non-
linear, as is evident from (Ble). ' 

It is interesting to note that the nonrelativistic analog of 
the transformations (Bla)-(Blf) [when the carrier space 
is E3(q) x E1 (t)] is precisely the set of defining trans
formations for Hagen's "conformal Galilei group" (cf. 
Ref.2). Thus, our JC 5 is essentially the relativistic gen
eralization of this group. 

We also observe that if we omit the C and D transforma
tions (Le., set a :::::: 0, A :::::: 0), then Eqs. (Bla)-(Bld) be
come the original defining transformations of the group 
9 5 whose central extension was the major topic of study 
in Refs. 5-8. 

16We adopt the notation T = (J23 .J3I,J12 ) and N = (J0I.J ro ,J03 )' 
17 Note that Eq. (2.7) tells us that 12 generates the compact SO(2) subgroup of 

our SUe I, I). Of course, instead of the Slate label 12 we could use any other one, 

like II' 
I'We shall adopt the same notational convention in all subsequent cases too. 
I 9 These are the covering groups of SO(3), SO(2,1), and the Euclidean group 

£(2). 
2 o The situation resembles closel¥ that which is found in the classical Galilei 

group S.; cf. Ref. 15. 
2 I Naturally, we consider the subcase when p2 > 0, so that the Poincare part of 

the little group is SU(2). 
22This can be seen by introdUCing a noncanonical basis and will be discussed in 

Sec.4B. 
23 For a well readable survey of dilatation physics in tlle framework of quantum 

field theory, see, for example, P. Carruthers, Phys. Rep. I, I (1971), or S. 
Coleman, "Dilatations", in The Proceedings of the I 971 International Summer 
School of PhYSics Ettore Maiorana, edited by A. Zichichi (in press). 

2. Recall that D = 2f1. 
2 sThis can be seen from the defining transformations (2.1) which show that the 

parameters al' and bl' have the same dimension as the coordinates whereas all 
other parameters are dimensionless. 

26 Obviously, :D is outside the enveloping algebra. 
27 This is analogous to the fact that electric charge Q has negative charge parity. 
28 The commutator between the generators KI' of proper conformal transformations 

and the momenta PI' is [KI',PvJ = -2i(gl'vD+Jl'v), and this prevents the imple
mentation of a scale conjugation. 

29The subsequent arguments are analogous to those used, for example, in the 
derivation of a mass formula for broken SU(6) symmetry. 

30It is interesting to note that (apart from a normalization factor) Z!I is the 
standard W2, Z~ I is its analog V2, and zb is WI'VI'. 

3 I The procedure is the same as the one which is used in the Poincare framework 
when an angular momentum basis is introduced in place of the canonical one 
by taking the chain (P:::J SL (2, C) :::J SU(2):::J SO(2). 

32 Observe that the Casimir operators of (SL (2'C)J X TJ? )®(T~ X T~) are 
Wv,p 2 Ie ,PH and those of SL(2,C)JX Tf are D,JJ,JJ·. 

33 For the notation T and N, see Footnote 16. 
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34See, for example,!. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representa
tions of the rotation and Lorentz group (Pergamon, New York, 1963). 

35 All particle data and symbols are taken from the tabulations of the Particle 
Data Group, Rev. Mod. Phys. 43 (2), Part II (1971). 

30 Here k cannot be 1/2, because no s = 1/2 member occurs in the L'l-type family. 
37 All baryon states considered have positive parity. For the meson states, there 

are considerable Ilnc0rtainties. 
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We present sequences of converging upper and lower bounds to the partition function per spin specifically for a 
ferromagnetic Ising model which are valid in the entire finite, magnetic-field, inverse-temperature plane. They are based 
on the exact high-temperature expansions for a finite system, properties of generalized Pade approximants, and the 
Villani limit theorem. The results depend only on the general structure of the partition function and certain 
monotonicity with system size properties which hold fairly generally. 

An important problem in theoretical physics l is the de
duction of exact results for the general dimension, spin
~ ISing model. In particular, at the present time for 
dimension higher than 2, methods are lacking which can 
be proved to converge to compute the thermodynamic 
properties in zero magnetic field near the phYSically 
interesting critical point singularity, or even its exact 
location for that matter. In this work we show how to 
construct sequences of successive approximations to 
the free- energy per spin which bound it from above 
and below for all temperatures and magnetic fields and 
converge to the thermodynamic free-energy per spin 
in the limit. Our procedures can be generalized to apply 
to a variety of other statistical mechanical problems, 
but we have chosen the ISing problem for ease of pre
sentation. 

Gordon2 showed that the generalized Pade approximant 
procedure could be used to give rigorous, converging 
upper and lower bounds to the free energy of a !inil e 
system from the coefficients of the high temperature 
expansion. At the time his results did not seem useful 
for thermodynamic systems because the necessary 
coefficients diverged with the system size. Recently, 
however, Villani3 and Fogli el al.4 have, in another con
nection, shown how to usefully employ particular types 
of series with all divergent coefficients. By generalizing 
their results, and by establishing a monotonicity property 
of the free energy, we have been able to obtain conver
gent upper and lower bounds to the free energy. By 
differentiating these successive approximations to the 
free energy, we, of course, obtain convergent approxi
mations to the various thermodynamic properties. 

We remark that, based on the theorem of Lee and Yang,5 
it has previously been shown6 that converging upper 
and lower bounds on the magnetization can be given for 
H"'" O. Also Gallavotti et al. 7 have shown for H = 0 and 
T large enough that the free energy is analytic, and hence 
exactly obtainable from the power series expansions. 
We extend our present results to cover the whole H-T 
plane, T > O. 

We introduce our ISing model Hamiltonian in the follow
ing form: 

.JC = ~ e!;/l- GiGj ) - m '£Gih i • 
t,} t 

(1) 

The partition function is then 

Z = '£ exp(- (3.JC). (2) 
{ai~±l} 

We restrict the interactions to be ferromagnetic, 0.t 2: 0, 
and will normally take hi = H, the magnetic field. Under 
these restrictions we can prove the following mono
tonicity property: 

[1/# (2A)]lnZ 2A :5 [1/#(A)] InZA' (3) 

where A is a set of the underlying lattice sites on 
which the spins are situated and 2A are two identical 
nonoverlapping such sets. The function #(X) is the num
ber of sites in set X. To prove this result, suppose we 
consider A n B = <p. Then 

Z AUB= '£ exi- (3. '£ e!;/l- GiGj ) + 13m '£ Gih i) ai~±l \ "yeA ,eA 

X exp (-- (3 L JJI - OFj») 
,EA 
JEB 

X exp (- (3.,£ e!;p - GiO) + 13m ,£Gih i), (4) 
',)eB ,eB 

or, as expf- {3e!;j(l-- 0iGj)]:5 1 for any allowed state, 

Z AUB:5 ZAZB' 

We may rewrite Eq. (5) as 

1 InZ 
# (AUB) AUB 

:5 -- InZ + -- InZ - -- InZ 1 B (1 1) 
# (A) A # (AUB) #(B) B # (A) A, 

(5) 

(6) 

which leads to (3) when we let the interactions and under
lying configuration of set B be identical to set A. Thus, 
at least for doubling of the size of the set, we have shown 
that the [lnZ)# (A)] is monotonically decreaSing with 
# (A). For higher dimension d we can retain the same 
shape by increasing the system size by a factor of 2d 
per step, which is to say doubling in each direction. We 
remark that the fundamental inequality (3) really depends 
only on having an interaction of fixed sign and is sus
ceptible to wide generalization. 

We next quote our modified version of the Villani limit 
theorem. 3 

Theorem: Let there be a sequence of functions! m(X) 
with the properties 

(a)!n(l) = 2, limf,,(x) = 2, !n(x) < 2, 1 < x < co, 
x~oo 

(b) lim !n(x) =!(x), 1:5 x < co, lim!(x) = A < 2, 
n--+OO x""'" 00 

Then there exists an infinite sequence of minima of 
!n(x),xn such that 
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lim xn = ro, 
n->oo 

lim fn(x n) = A, 
n->OO 

where by properties (c) and (d)fn(xn) 2: A for all n. 

(7) 

(8) 

Proof: By property (a) there must exist at least one 
minimum off (x). By properties (b) and (c) thefn (x) 
can be made to agree arbitrarily closely to a monotoni
cally decreasing functionf(x) over any pre-assigned 
range 1 :5 X :5 R < roo Thus by choosing n large enough 
we must have a minimum at least as large as R. Thus, 
as R can be as large as we please, we have result (7). 
For any E > 0 we can by (a) and (b) find an R(n, E) such 
that If(x) - fn (x) 1< E for 1:5 x:5 R. It must be, by (d) 
and (c), that 

(9) 

but, as R(n, E) -> ro, as n -> ro, Eq. (9) implies that the left
hand side of (8) differs from the right by at most E. As 
E is arbitrary, we therefore conclude (8). 

The final step in establishing such a convergent bounding 
sequence is to exhibit such a sequence ofJ" (x) for (ZN)1/N. 
To this end we, with Gordon2 consider the Stieltjes in
tegral 

f'N 
ZN = fa e-BE dpN(E), (10) 

where r N is an upper bound on the total energy in any 
state implied by (1) and dp N 2: O. We approximate 

(11) 

where the am' b k' and am are determined by equating the 
coefficients of {3 s, 0:5 S:5 2n + j, in Zn ((3) and NBn )~). 
The properties of these approximants are wellknown.:< ,6 ,ll 

Briefly 

(- 1)1+i[NBndj{3) - NBn./(3)] 2: 0, 

(- 1)1+i[NBn )(3) - NBn-1,j' 2({311 2: 0, (12) 

NBn ,o({3) 2: Z N({3) 2: NBn ,-1 ({3), 

where j 2: -1, and it is certainly sufficient that the ra
dius of convergence [by (10)] is finite to insure 

o :5 (3 < ro, j 2: - 1, (13) 

Finally, all am> O. From these results we can now veri
fy that 

J;,(N) = IN B n,O({3)jl/N, f(N) = [ZN({3)]1/N, 

A({3) = lim [ZN({3)]1IN (14) 
N-'> 00 

satisfy all the conditions (a)-(d) of the limit theorem, 
The allowed values of N are restricted to 2nd , as those 
are the only ones for which we have proved (c). How
ever, as by the linked cluster theorem, we expect f(N) = f 0 + 
f / N + "', we expect (c) to also hold for all N large 
enough. Condition (a) follows from Z1({3) = IBn,/(3) = 2, 
the result that all am> 0, and an inequality obtamed 
from the direct asymptotic solution for large N, 2N C

n 
({3) 

x N-n(n + 1):5 NBn,O ((3) :5 2N. Thus by the limit theorem 
and the properties of the B' s we conclude that 

lim [N(n)Bn,o({3)]1/N(n) = A({3), 
n->oo 

(15) 
[ ( )B ((3)]1/N(n) 2: A({3) 

N n n,O • 

We can also deduce convergent lower bounds to A({3) in 
a similar way. Let us consider an ISing model with only 
nearest-neighbor interaction and coordination number 
q. There is no difficulty in greatly relaxing this condi
tion. Then if instead of (1) we pick 

JC = - :0 J(l + aia.) - m.6 aih i, 
nearest J i 

(16) 

neighbors 

it is easy to show 

lim [ZN({3)]1IN = e-q6JA({3). 
N ... oo 

(17) 

"'-

But for Z the fundamental inequality (3) is reversed as 
exp[{3J(1 + a ia.)] 2: 1. Clearly the conclusions of the 
limit theorem lare equally valid if the inequalities are 
reversed for a monotonically increasing function instead 
of a decreasing one. A slightly more involved argument 
is required as limx->oofn(x) 7' 2 here, but limx~oo!n(x) 
:5 f(x) in this case turns out to be adequate. The results 
(12) change as the energies are now all negative instead 
of positive as before. The conclusion is that every B is 
a lower bound. Consequently, we conclude 

lim [ B({3)]1iN(n) = A({3)eq6J .N(n) n,] , n->OO (18) 
[ ( )B .({3)]1/N(n):5 A({3)eq6J 

N n n.) , 

where j = 0, - 1 are best for a fixed number of coeffi
cients and N(n) here is determined by maximizing. 

Hence we have constructed rigorous converging upper 
and lower bounds for the partition function per spin or 
equivalently the free energy per spin. By standard ther
modynamics, we can by differentiation of these sequences 
of approximants generate convergent approximants for 
the various thermodynamic variables. 

As a simple illustration, we will apply these results to 
the linear chain in zero field. Here, denoting (3J by II., 
we have by direct calculation 

ZN =:0 exp(- K ~\1 - a ia i+1») = 2(1 + e-2K )N-l 
0i:-:l:1 F-I 

= 2N[I- (N- I)K + !N(N- I)K2 

- ~ (N- 1)2(N + 2)K3 + ... 

and also 

ZN = 2(1 + e 2K)N-l 

= 2N[1 + (N - l)K + ± N(N - I)K2 

+ ~ (N - 1)2 (N + 2)K3 + .... 

(19) 

(20) 

Equations (15) and (18) become,for NB1,O({3) and NB 2_l ({3) 
which use the K2 and K3 terms respectively, 

2e-2Kg exp[ (N - 1 - om - I)K] 

+ ~ exp[(N - 1 +...IN - l)K]) liN 

:5 (1 + e-2K ):5 2f(1/N) + (1- I/N)e-NK j1IN. (21) 
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For K == 0, ]\I == 1 extremizes to give the exact answer 
as expected. For K = 1, the left-hand side is a maximum 
for N near 16 and the right-hand side a minimum for 
]\I near 4. These bounds yield 

0.84:5 1. 135:5 1. 43. (22) 

In the K = ro limit, the best result from (21) arise when 
N also goes to 16 and 4 and are 0:5 1:5 1. 38. Since 
our procedure is based on the exact high temperature 
expansions for finite sized systems, we expect, and find 
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and Breach, Paris, in press). 

'G. L. Fogli, M. F. Pellicoro, and M. Villani, Nuovo Cimento A 6, 79 (1971). 

J. Math. Phys., Vol. 13, No. 12, December 1972 

in this illustration, that the method converges to a given 
accuracy first at high temperatures and the error bound 
widens monotonically as the temperature decreases. 
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We obtain a simple spectral representation for the momentum space wavefunctions of the Schriidinger equation with a 
Coulomb potential in the form of a contour integral. Both the bound state and the scattering solutions are evaluated as 
residues at the poles enclosed by this contour. 

1. INTRODUCTION 

A consideration of the relativistic or nonrelativistic two
body problem leads naturally to integral equations in 
momentum space for the wave function describing this 
system. Various methods are needed for dealing with 
problems of this type, and one that can be of help1.2 
is that of using a spectral representation for the wave
function. In this paper we consider the well-known 
nonrelativistic Coulomb problem in momentum space. 
We demonstrate in detail how the use of a spectral rep
resentation easily leads to a complete set of solutions 
to this problem. 

In general, two methods have been used to obtain the 
momentum- space solutions to the SchrOdinger equation 
with a Coulomb potential. The first, used by Podolsky 
and Pauling,3 is to Fourier transform the solutions to 
the equation in coordinate space. Fock,4 on the other 
hand, was able to transform the equation to a four
dimensional hyperspace in which the bound-state solu
tions were given by the 0(4) spherical harmonics. 

Our own approach in this paper is to employ a spectral 
representation. We express the momentum space wave 
function as a contour integral in this spectral function 
space. The spectral function is determined by solving 
a first order linear differential equation, and the wave 
function is then obtained by evaluation of the contour 
integral. Both the momentum space bound state and 
scattering solutions are given as residues at the poles 
enclosed by this contour. 

2. BOUND-STATE SOLUTIONS 

The Schrodinger equation in momentum space with a 
Coulomb potential can be written as 

(p2 + k2) cp(p) = ~ 1 d 3p' cp(p') , 
112 (p _ p')2 

(1) 

where i\ = met, et is the fine structure, and k2 = - 2mE. 

Here we are assuming k 2 is positive, so that initially we 
are solving the bound-state problem. This equation is 
supplemented by the boundary conditions that cp(p) be 
finite at the origin and that for p ...... CXJ, cp(p) vanishes 
fast enough for Jd 3pcp(P) to be finite. This last condi
tion is the counterpart of the requirement that the 
Fourier transform of cp(p) be regular at the origin in 
coordinate space. 

Since Eq. (1) is 0(3) symmetric, we can express the 
solution as 

(2) 

where 1f (m(P) is a solid harmonic of the three compo
nents of p, that is 1f (m (p) = pi Y 1m (e, cpl. We then try to 
find a solution through a spectral representation of the 
form 

r dxg(x) 
CPkim(P) = 1f,m(P)Je (p2 + x)l+2' (3) 

where g, (x) and the contour C are to be determined so 
that cp k m(P) satisfies Eq. (1). The ansatz of Eq. (3) is 
suggested by the approach taken by Wick1 and Cutkosky2 
to solve the Bethe-Salpeter equation for two scalar 
particles with a kernel involving exchange of a mass
less scalar meson. 

If we substitute cp k Im(P) into Eq. (1), we obtain the equa
tion 

1flm(P) j 
C+ 1 e 

k 2 _ X ' +C ---dx ( i\ 1 
(p2 + X)I+l ( )gt gc xl/2 g( 

_ 1f (m(p)gc (x) I b _ 0 
(p2 + X)I+l a - • 

(4) 

In this equation a and b are the endpoints of the contour 
C. In reducing Eq. (1) to Eq. (4) the left-hand side of 
Eq. (1) has been rewritten as 

(p2 + k2) cp k tm(P) = 1f Im(P) Ie dx g( (x) ( 1 _ (k
2 

- x) d 1 ) 
(p2+X)I+1 £+1 dx(p2+x)I+1 

= 1fcm(p)rJc dx (gl __ 1_ g + _1_ (k2 _ x)g ~_ (k
2 

- x)g (x) IOJ 
t (p2+x)l"l-l C+l (C+l I) (C+l)(p2+x)I+1a' (5) 

where the last step follows after an integration by 
parts. The integration over pi in the right-hand side 
of Eq. (1) is done using the parametrization method of 
Feynman: 

i\ 1 cp kim (pi) i\ r 1 
d 3p' = - Je dx g (x) d 3q 112 (P _ p')2 112 ( 

X f 1 du(t + 2)(1 - u) 1+11f tm(q + up) 

o [q2 + (1- u)(x + up2)Jt+3 

i\ (2 t + 1) I '1 ( () r d ( ) = 221+1 (C + 1)1 "ImP Je xg{ x 

11 
X 0 

du u l 

(1 - U)1/2 (x + Up2)3/2+t 

( ) r dx gi (x) 
1f 1m P Je Xl/2(X + p2) 1+1 

(6) 
i\ 

t + 1 

This result is valid for x restricted to the cut complex 
x plane with the cut running from 0 to - CXJ along the 
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negative real axis. If the contour C is chosen in this 
region so that there is no contribution from the inte
grated term in Eq. (4), then g (x) must satisfy the equa
tion 

The solution to this equation is given by 

I (k+X1/2)Alk 
gl (x) =A ki (k 2 - x) , 

k - x1/2 

(7) 

(8) 

where the constant Ak { is determined by normalizing the 
solution. 

In order to simplify the analysis, we make the change of 
variable x 1/2 = y. Then 

cP (p) = A 11 (p) J dy Y (k
2 

- Y 2) I (k + Y) AI k • (9) 
ktrn kl ,m C (p2+y2)t+2 k-y 

The contour C is now restricted in the complex y plane to 
the region R~ > 0 or R~ < O. The contour must not, of 
course, c ross the Rey = 0 axis where the factor (p2 + y2)-( 1+2) 

is singular. In these two regions the singularities of 
the integrand in Eq. (9) are determined by the value of 
A/k. For the case of A/k not equal to an integer, the 
integrand has branch points at y = k and y = - k. There 
are, therefore, two contours C 1 and C2 with correspond
ing solutions cpn~ and CPkcn that can be chosen so that 
there is no contribution from the integrated term of 
Eq. (4). These two contours are shown in Fig. 1. For 
p -) 00, these solutions do not approach zero fast enough 
for J d 3p CPklm(P) to be finite. In fact for large values of 
p 

CPk~)o(P) -) i;:o 1100 sine:), p -) 00, i = 1,2, 

(10) 

and for £ '" 0 

A proof of these statements is given in the Appendix. 

Since both cP klib and cP k5~ have precisely the same be
havior for large p, it is natural to try cP klib - cP k~b as a 
possible solution which may behave better for p -) 00 • 

The integrand of Eq. (9) vanishes fast enough as y -) 00 

so that for any fixed p the contour C 1 - C 2 may be 
closed at infinity and the function cP k66 - cP k5b evaluated 
as 21Ti times the sum of the residues at the poles at 
y = ± ip which are enclosed by the contour. In order to 
evaluate the residues we choose the phases of y - k and 
y + k so that arg(y - k) = arg(y + k) = 0 just above the 
right hand cut. With this choice, at the location of the 
poles 

arg(y + k) = 1T - arg(y - k), y = ± ip. (12) 

Thus for the contour C 1 - C 2' we obtain 

y PLANE 

FIG.!. Contours C 1 and C2 for 
the bound- state solutions given by 
Eq. (9) for the case of A/k not equal 
to an integer. The x's indicate the 
position of poles at y = ± ip. 
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where 

(y + k) = e-in e2i arg(y+k) at y = ± ip. 
(y - k) 

As P -) C1J, arg(y + k) I Yc±{iP -) ± t 1T. Combining this re
sult with Eq. (13), we obtain the result 

cP (1) _ cP (2) ~ 1TA kO 'YOO 
kOO kOO P -) ;JJ P 

e- i7f A/k 
(1- e-i2n A/k). 

(p2 + k2) 
(14) 

Thus, unless A/k is an integer, cP klib - cP k~b behaves as 
p-3 for p -) 00 and J d 3pcp(p) is infinite. These solutions 
therefore fail to satisfy the boundary conditions. This 
argument can be extended to the higher angular momen
tum states to show that for A/k not an integer the phase 
of the residue at the pole y = ip will be different from 
that at y = - ip and, therefore, there can be no cancella
tion of the leading p behavior. 

The only possibility remaining for a bound-state solution 
is A/k = n, where n is an integer. Rather than continue 
to evaluate cp~Vm - cP~~~ as the sum of residues at the 
poles y = ± ip, it is easier to note that for A/k = n, the 
integrand of Eq. (9) is analytic for Rey < 0 and, thus, 
CP~7~ reduces to zero. Moreover, if n:s £, the integrand 
is also analytic for Rey > 0 and, thus, rn (1) is also zero 't'nlm , 

and there are no solutions. For n = C + 1, £ + 2, .•. , 
the integrand has a pole of order n - £ = 1, 2, . .• at 
y = k. The contour C 1 can be deformed into one enclos
ing this pole. The bound state wavefunctions are given 
as the residues at this pole: 

cP (1) (p) = 21Ti Ani 11 Im(P) (dn- C -1 Y (k + y )n+ I) (15) 
nlm (n-£-l)! dyn-!-l (P2+ y 2)1+2

Y
=k 

where the constant Ani normalizes cP~ Z~(p) to unity and 
k = (- 2mE)1/2 = A/n. USing the spectral representa
tion, this normalization constant is determined to be 

AnI =- i 2t+1 ((n- £-1)!(2£ + 2)(£ + 1)!)1/ 2.(16) 
(21T)3/2 n(n + £)! (2k)2 I-I 

3. SCATTERING SOLUTIONS 

The spectral representation used to determine the bound 
state solutions also determines the scattering solutions 
if we let k 2 -) - K2, where K2 = 2mE and E> O. As an 
example we will discuss the £ = 0 partial wave solu
tions in some detail. 

We begin by considering the outgoing wave solutions by 
assigning K a small positive imaginary part if. Letting 
k -) i(K + iE) in Eq. (9), we obtain the solution 

CPKOO(P) 

= lim A 11 (p) r dy y (Y + i(K + iE)) A/iK 
E~O KO 00 Jc (2 2)2 .(. ) , p + y y - Z K + ZE (17) 

where there are two possible choices for the contour C. 
The integrand of Eq. (17) now has branch points at 
y = - iK + E andy = iK - E. Thus for the contours C3 
and C 4 shown in Fig. 2(a) there are the corresponding 
solutions cP ~5b and cP ~66' Each of these solutions be
haves as p-2 for p -) 00. The proof is the same as for 
the bound- state solutions cP k66 and CP156 and is presented 
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in the Appendix. The sum of these solutions is also a 
solution which we denote by cp ;+Jo. It can be evaluated as 
the sum of the residues of the poles at y = ± ip enclosed 
by the contour C 3 + C 4' In order to do this it is again 
necessary to specify which Riemann sheet we are on. 
We do this by choosing arg(y - iK) ---7 0 and arg(y + iK) ---7 

o as y ---7 00 along the positive real axis for all scatter
ing states. With this choice we have the following re
sults at the poles: 

p> K 

P<K 

1 
y = iP . 
y =-zp 

y = ± ip 

arg(y - iK) = h arg(y + iK)=h, 

arg(y - iK) = - t1T arg(y + iK)= h, 
arg(y - iK) = - t1T arg(y + iK) = h. 

(18) 
With the aid of Eqs. (17) and (18) we can evaluate the out
going solution cp~ho: 

(+) ( )_ AKO'YOO A1T ~rp + K)A/iK 
CPKOO P - --

P (p2 _ K2) P - K 

cp(+) (p) = A KO 'YOOA1T 
KOO (2 2) P p - K 

e~A/K[C : ~) A/iK 

-C:;) Ali] p < K. 

Thus for p ---7 00, 

cpH (p)---7A1TAKO'YOO (1_e2~AfK), 
KOO p3 

(20) 

and cp ~~)o is not regular at the origin in coordinate space. 

For the incoming wave solution, when K has a small 
negative imaginary part - iE, the analysis proceeds in 
the same manner as for the outgoing wave. The cut 
structure and the possible contours are shown in Fig. 
2(b). We again consider the solution CPt60 = CP~8& + cp~8b, 
where the contour over which cp !-60 is evaluated is 
C 5 + C 6' For this case the cuts have been displaced 
relative to their positions for the outgoing solution, and 
thus the values of the phases at the poles y = ± ip en
closed by this contour are changed from the preceding 
results. From Fig. 2(b) we see that the phases are 

p> K 1 ~ 
= ip 

= - ip 

P < K Y = ± ip 

arg(y - iK) = - % 1T 

arg(y - iK) = - h 
arg(y - iK) = - t1T 

arg(y + iK) = h, 
arg(y + iK) = - ~1T, 

The incoming partial wave cp~;/o(p) is 

arg(y + iK) = h. 
(21) 

cp(_) (p) = A1TAKO'YOO 1 [e2~AfK(P + K)A/iK 
KOO P (p2 _ K2) P _ K -(; : :rl i] p > K, 

where in evaluating the residues, the phases of Eqs. (18) 
and (21) are to be used for outgoing and incoming par-

'K-:~ 
(0) 

y PLANE 

_'K-C"~ 

y PLANE 

m-,n, 
C3 

~c, 
iK+E 

(b) 

FIG. 2. (a) Contours C3 and C4 
for the outgoing partial wave 
scattering solutions given by Eq. 
(17) when K has a positive infinite
simal imaginary part iE. (b) Con
tours C 5 and C 6 for the incoming 
partial wave scattering solutions 
when K has a negative infinitesimal 
imaginary part. 

(22) 
cp(_) (p) = A1TA KO 'YOO 

KOO p(p2 _ K2) 

p< K. 

The asymptotic nature of this solution is given by 

cp~-60(p) ---7 A1TA;~ 'YOO (e2nA/K _ 1), P ---7 00. (23) 

Although neither cp ~+60 nor cp ~-60 vanishes fast enough as 
p ---700 for J d 3 pcp to be finite, we see that it is possible 
to obtain such a solution by considering the sum cp !+60 + 
CP~-60, provided that the normalization constants for both 
are chosen to be the same. This solution is the regular 
e = 0 Coulomb partial-wave solution. 

Once we have obtained the regular partial wave solutions, 
the last point to be examined is the nature of the singu
larity at p = K. Using the phase conventions already es
tablished, we can evaluate the various solutions at this 
point. For the outgoing wave solution, for example, we 
obtain the result 

cp (+) (p) = lim _---'K.:...::.--=-.:'--_ A 0 'Yoo A1T ~~ 2Ke
in

/2 )AfiK 
KOO £~O p[p2 _ (K + iE)2] [(p _ K)2 + E2)1/2 

_ 
(
[(P - K)2 +2EK2J1/2e3i~/2)A/iKJ, p = K. (24) 

We may also observe that Eq. (17) with the contours C 3 

and C 4 and the corresponding equation when K has a 
negative infinitesimal part with contours C 5 and C 6 are, 
in fact, the Fourier transforms of the so-called irregu
lar Coulomb partial wave solutions in coordinate space. 5 

The arguments we have given can, in principle, be ex
tended to cover all the partial wave solutions. The 
general solution for arbitrary C is given by 

tial wave solutions, respectively, and their sum is the 
regular standing wave solution. 

(25) 
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4. CONCLUSION 

We can look at our spectral representation approach to 
the solution of the Schrodinger equation from two points 
of view. On the one hand, the specific results we have 
obtained, because of their simplicity, may be useful in 
the evaluation of matrix elements of various momentum
space operators, or to study the general characteristics 
such as analyticity properties or high momentum limits 
of such matrix elements. On the other hand, the spec
tral representation technique may in itself be of some 
interest. Instead of having to solve an integral equation, 
as in momentum space, or a second-order partial dif
ferential equation as in coordinate space, we deal with 
only a first-order differential equation in the single 
spectral function variable. Thus, the solution becomes 
trivial and symmetries present in the problem are used 
from the start. Our treatment serves as another in
stance of the simplifications achieved in the spectral 
function approach first introduced by Wick and leads to 
the conjecture that it may have a wider applicability to 
other eigenvalue problems. 

APPENDIX 

We show here that the solutions given by Eq. (9) for C 
equal to C1 or C2 and "A/k not equal to an integer do not 
vanish fast enough as p -> 00 for I d 3 pcp k I m(P) to be 
finite. First we consider the e = 0 state, 

Since 

le
j 

dy y (::~r/k 

j = 1,2. 

(A1) 

is not finite, cp kb~(P) approaches zero more slowly than 
p-4 for large p. After an integration by parts 

·Supported in part by the National Science Foundation. 
tN. S. F. Predoctoral Fellow. 
'G. C. Wick, Phys. Rev. 96, 1124 (1954). 
'R. E. Cutkosky, Phys. Rev. 96, 1135 (1954). 
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As P -> 00 

(A3) 

where 

J(jl = Ie dy _1_ (k + Y) Alk, (A4) 
j k2 _ y2 k _ Y 

provided J(j) '" O. The integral J(j) can be evaluated 
by deforming the contours C1 and C2 of Fig. 1 into ones 
running along the Rey = 0 axis. The result is 

JUl = i"A-1 sin(lT"A/k), 

which is not zero unless II./k is an integer. 

For the e '" 0 states, Eq. (9) becomes after e integra
tions by parts, 

cpV:m(P) = Ak(?:i (m(P) le
j 

(p:y/y2)2 fi (y), (A5) 

where ff (y) is finite everywhere along the contours C 1 
and C2 and 

f((y)~o[G:~r/1 y->oo. (A6) 

Thus since ?:i (m(P)~ o(p() 
p--+oo 

cpk~~(p»O(PI-4), P-'700, e", O. (A7) 

The above results are still valid if k -> i (K ± i€) for the 
scattering states. Thus cp ~~~, j = 3,4,5,6, also fail to 
satisfy the boundary conditions. In particular, 

1 cp~~o(p) 1-----7 ?:ioo IA"o sinh (1fK"A) I, (A8) P -> -JJ p2 
which is nonzero for all values of 11./ K. 

'B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929). 
'V. Fock, Z. Phys. 98, 145 (1935); M. Levy, Proc. R. Soc. A 204, 145 (1950). 
'A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1958), Vol. I, 

p. 425, and Appendix B. 



                                                                                                                                    

Erroneous bound state conditions from an algebraic misrepresentation of spin 
wave theory 

S. L. Trubatch 
California State University, Long Beach, Long Beach, California 90840 
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A recently derived condition [c. J. tiu and Yutze Chow, J. Math. Phys. 12,2144 (1971)] for the existence of bound 
states in the Heisenberg ferromagnet is shown to be the erroneous result of an improper construction of the Hilbert 
space for an algebraic representation of the spin operators. 

Recently,l the Heisenberg model of ferromagnetism has 
been reinvestigated in terms of a different algebraic 
representation for the spin operators. The resulting new 
condition for the existence of bound state contradicts a 
previous expression obtained in an earlier calculation2 

based on Green's function techniques. In this note it is 
demonstrated that the new bound state condition is the 
incorrect result of an improper construction of the 
Hilbert Space for the algebraic representation. 

Heisenberg's model of ferromagnetism is described by 
the Hamiltonian 

H = - "E .IzmSI·Sm - B "ESt, 
lim z 

where SI is the spin operator for the atom at the lth site, 
.Iz m is the exchange integral between atoms at the lth 
and mth sites, and B is the externally applied magnetic 
field. The spin operators satisfy the usual commutation 
rules 

[St, S;"l = 2 ()lmSt, 

where 

and S~, Sf are the cartesian components of the spin 
operator at site" l" . 

It is well known3 that these spin operators can be realiz
ed by an algebraic representatioJl in terms of two sets 
of commuting Bose operators. In the notation of Ref. 1, 
itis 

S 2 - .![(3 +(3 - b +b l' 
1- 2 I I I I' 

where the Bose operators satisfy the communtation 
rules 

[(3 I' (3;.l = 6 I m' 

[(3/1 (3 ml = 0, 

[(31' b;.l = 0, 

[bl' b;.l = 61m, 

[bl' bml = 0, 

[b I' (3 ml == O. 

Although the algebraic representation reproduces all 
the spin commutation rules, it does not preserve the 
"kinematic constaint,,4 

(S;)28+1 = 0, 

where S is the magnitude of the spin at the site "z" . 

'c. J. Liu and Yutze Chow, J. Math. Phys. (N.Y.) 12, 2144 (1971). 
2M. Wortis, Phys. Rev. 132, 85 (1963). 
'J. Schwinger, Quantum theory of angular momentum, perspectives in physics, 

edited by L. C. Biedenham and H. Van Dam (Academic, New York, 1956). 

Of course, this constraint is entirely equivalent to the 
"auxiliary condition" [Eq. (3. 4) of Ref. 1l 

(3+(3 + b+b = 2S. 

Thus, in order to avoid the introduction of spurious 
"kinematic interactions,,,4 the Hilbert Space in which 
the operators act must be suitably limited. In other 
dynamical applications of this representation,5 it has 
been shown by comparison with more usual techniques 
that the correct dynamics is preserved if and only if 
the Hilbert Space is restricted to vectors of the form 

IP l • .. PN) 

In Ref. 1, Liu and Chow consider states of the form 

Ip
1 
... p )}£ "E c{n}({p}l{q}) 6 eq·1 

N noO {q} (m !)112(n!)112 Nn/2Nm/2 

x(~ (3;'-N,j2s)n n1btiiO), 

where q'l = 1:/(0 lq ili' These states are not clearly ofthe 
form discussed above. They do not satisfy the constaints 
imposed by employing a Bose representation for the 
spin operators. 

As a result, these states introduce kinematic interac
tions. Any effective Hamiltonian derived in the space 
of these states will have a spectrum riddled with spur
ious eigenvalues. By extending the Hilbert space to in
clude inadmissable vectors, all control over the dynamiCS 
of the problem, as described in this representation, have 
been lost. 

The correct two deviate state for the discussion of 
bound states is given by 

12) = "Effl+2b+2S-2 n b+ 2s I0) 
P tr P P q >"P q 

+ "E "Ef (3p!3+b+2S-1b+2S-1 n b+ 2s I0) 
P"q pq q P q r"p r ' 

r>"q 

A straight forward solution of the eigenvalue problem 
using these states6 leads to the usual bound-state condi
tions. 2 

Finally, the apparent reproduction by the authors of Ref. 
one of the correct bound state condition for the one
dimensional case cannot be taken seriously unless the 
correct binding energy M can be deduced by their method. 

4F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956). 
'J. M. Robinson and S. L. Trubatch, Am. J. Phys. 39, 1190 (1971). 
60. C. Mattis, The theory of magnetism (Harper and Row, New York, 1965). 
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The nonstandard A:<P~(X): model. I. The technique of nonstandard analysis in 
theoretical physics· 
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Courant Institute of Mathematical Sciences and Department of Mathematics, 
University Col/ege, New York University, New York 

Abraham Robinson 
Department of Mathematics, Yale University, New Haven, Connecticut 

(Received 22 May 1972; revised manuscript received 21 July 1972) 

The methods of nonstandard analysis are demonstrated as a preliminary step for the construction of the 
nonstandard "':<pi : model. Elementary quantum mechanical problems are solved and the renormalization 
of the scalar field (Yukawa interaction) is investigated. 

1. INTRODUCTION 

In the applications of analysis, one often speaks of infi
nitesimal increments and of infinitesimal volume ele
ments. Since Weierstrass, the above phrases were un
derstood to be shorthand formulations of more compli
cated expressions involving limits. However, some time 
ago one of the authors 1 • 2 showed that expressions in
volving infinitesimals can be taken literally if one refers 
them to a suitable number system that contains infinite
ly large and infinitely small elements. The subject that 
arose out of this realization has come to be known as 
nonstandard analysis (n.s.a.). It is described informally 
in Sec. 2 below. 

We feel that n.s.a. can be used advantageously in phYSics. 
Thus, many calculations can be Simplified by its use 
through the avoidance of passages to the limit at cer
tain stages. Also, using infinitely large numbers one can 
give a rigorous meaning to self-energies and renorm
alization. Finally, one may treat certain nonseparable 
Hilbert spaces with the same ease as separable ones. 

Using n.s.a., we may retain results calculated by stan
dard techniques whenever desirable, and, moreover, we 
may reinterpret them in the nonstandard system. On 
the other hand, the method is conservative; that is to say, 
any final result that has been obtained by nonstandard 
techniques but is itself formulated in standard terms 
might have been obtained by standard methods, though 
perhaps at the cost of a considerable effort. 

Here we shall consider cases in which the basic as
sumptions of a problem were formulated originally in 
standard language and are then translated into the lan
guage of n.s.a. and solved by its methods. Several ex
amples of this technique are given in Secs. 3 and 4 be
low. If we were to include an assumption that can be 
formulated only in nonstandard terms, then the result 
might not be amenable to a standard formulation and 
would have to be interpreted directly. We intend to de
velop this approach in a future paper. 

2. NONSTANDARD ANALYSIS 

Let R be the system of real numbers. An ordered field 
is an ordered number system which shares with R all 
the usual properties involving the operations of addition, 
subtraction, multiplication, and division. It has been 
known for a long time that there exist ordered fields 
which are extensions of R. Such fields are non-archi
medean,Le.,they contain positive numbers which are 
greater than any natural number (in R), while their re
ciprocals are smaller than any positive element of R. 
However, generally speaking, one cannot extend most of 
the familiar functions of analYSis [e.g., eX, siux, lux, 

In(x)] to these new systems so as to preserve their 
usual properties. Nonstandard analysis is based on the 
existence of particular ordered fields which include R 
as a subfield and for which the extended functions in 
question are, in fact, available and, moreover, are pro
vided automatically by certain model theoretic proce
dures. One of these is the so-called ultrapoUJer con
slruclion3 which, for the case of a countable index set, 
runs as follows. Let N be the set of natural numbers 
and let F be a free ultrafilter 4 on N. Then the field in 
question, *R, is defined as the system of all sequences 
of real numbers RN, where two sequences are regarded 
as equal if they coincide on a set of natural numbers 
which belongs to F. Functions on *R are defined term
wise on representative sequences selected from the 
equivalence classes just defined, and a relation is said 
to hold between sequences if it holds termwise for an 
index which belongs to the ultrafilter. R can be em
bedded in *R by identifying any real r E R with the 
(equivalence class of the) sequence (r,r,r,"') in *R. 

While the ultrapower construction sketched above pro
vides a relatively concrete realization of the type of 
structure required for nonstandard analYSiS, the class 
of these structures is quite large and contains fields 
which cannot be obtained in this way. They can be 
characterized in the follOWing way. 

A nonstandard model of analysis is a proper extension 
*R of the system of real numbers R, such that 

Transfer Theorem: Any true assertion X about R is 
still valid in *R, provided we reinterpret X in *R as 
follows: 

For every class of objects inR (e.g.,functions of one 
numerical variable, relations between numbers, rela
tions between functions, functionals, Le., mappings from 
functions to numbers), there exists a subclass, said to be 
the class of the corresponding internal objects. In par
ticular, the class of internal entities of *R, contains an 
element corresponding to each object in R. For example, 
the class *<1> of internal functions of one numerical vari
able in *R contains, in particular, extensions of all func
tions on R; but these functions do not exhaust * <I>. How
ever, all individuals (numbers) of *R are regarded as 
internal. Then the assertion X, supposed true in R, is 
still valid in *R, provided we reinterpret each quantifier 
in X (e.g., "there exists a function," "for all relations") 
as referring only to the corresponding internal objects 
in *R ("there exists an internal function," "for all in
ternal relations"). 

See Ref. 2. for a more rigorous formulation of these 
notions. An object which is not internal is said to be 
external. The following examples are instructive. 
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(1) Let N be the set of natural numbers. Then NCR. 
The corresponding internal subset *N of *R contains N. 
The elements of *N-N are called the infinite natural 
numbers. Any a E *N -N is greater than all elements of 
N. If *R has been obtained by the ultrapower construc
tion sketched above, then an example of an infinite na
tural number is given by the sequence (0,1,2,3, ... ). 
The axiom of induction is satisfied in *N if set (property) 
is interpreted as internal set (property). Accordingly, 
every nonempty internal subset of N possesses a small
est element. The set *N-N does not have a smallest ele
ment and, accordingly, is external. 

(2) If a E *R is numerically smaller than any positive 
r E *R, then a is said to be infinitely small or infinitesi
mal. The set of infinitely small numbers in *R is said 
to be the monad of zero. More generally,for any r E R 
the set of all numbers a E *R which differ from r only 
by an infinitesimal amount is said to be the monad of r, 
J.L(r). If a E J.L(r),then we write r = 0a and we call r the 
standard part of a. All monads are external. The num
bers of R ("standard numbers") are isolated points in 
the interval topology of *R. 

(3) If a and b are any numbers in *R,finite or infinite, 
then the interval a < x < a + b is internal. The interval 
of all a E *R, a positive infinite, is external. 

(4) The extensions5 of x2 and eX to *R, *(x2 ) and *(e x), 

are internal and even standard. (We may omit the star 
on the extended functions, by convention.) The function 

for x infinite 
for x finite 

is external. Among the functions which are internal but 
not standard are various representations of the Dirac 
delta function, e.g., a(x) :=; (1T1)X)-l sin1)2x, where 11 is an 
infinite natural number 

or 

for - ~1)-1 :5: X:5: h-1 

otherwise 

The first of these representations is analytic in *R; the 
second is not. In either case we have6 

o [J*R a(x)f(x)dx ] =f(O) 

for any f(x), which extends a bounded function which is 
defined and continuous in the neighborhood of ° in R. 
The validity of this equation is, in fact, a condition 
which has to be imposed on any reasonable interpreta
tion of the delta function. On the other hand, I a2(x)dx 

*R 
depends on our particular choice of the representations. 

(5) Letf(x) be a real function inR,defined for an inter
val a < x < b, and let Xo be a point in that interval. f(x) 
possesses an automatic extension to *R, as stated. It can 
then be shown thatf(xo + 1)) is infinitely close tof(xo)' 
in symbols f(x o + 11) !Oe f(xo),for all infinitesimal 11 if 
and only if f(x) is continuous at Xo in the classical 
(Weierstrass) sense,Le.,if and only if the following con
dition is satisfied: 

(C) For every positive E (in R), there exists a positive 0 
(in R) such that Ij(xo + h) - f(xo) I < E provided h < o. 

Now let f(x) be an internal function in *R Then condition 
(C) when interpreted in *R according to the rule adopted 
earlier, refers to positive E and a in *R. If f(x) satis
fies the condition in this form, then we say that f(x) is 
Q continuous (at x o). On the other hand, if f(x) satisfies 
(C) with E and a still assumed in R, then we say that 
f(x) is S continuous. It turns out that the condition that 
f(x o + 11) !Oe f(x o) for infinitesimal 11 is equivalent to S 
continuity. Thus, if f(x) is standard then all these defi
nitions coincide. For example, the two a functions de
fined above are both Q continuous at the origin, but not 
S continuous. By contrast, the function 

{
O, 

f(x) = 
11, 

X:5:0 

x> 0' 

where 11 is infinitesimal, is S continuous at the origin, 
but not Q continuous. 

In the sequel to this paper (Ref. 7) we shall require the 
notion of an enlargement which generalizes the kind of 
nonstandard model discussed here (see Ref. 2). How
ever, the above indications should be sufficient for the 
study of the present paper. 

3. EXAMPLES FROM QUANTUM MECHANICS 

In this section we demonstrate the use of n.s.a. by find
ing the bound state solution of the one -dimensional 
Schrodinger equation 

(~ + E - V(x)\ cp(x) == 0, 
dx 2 'j (1) 

for the square well, infinite square well, a-function, and 
Singular square well potentials. The infinite square well 
and the a-function potentials are limiting cases of "phy
sical" potentials, but themselves are outside the frame
work of quantum mechanics. This only means that we 
have to prescribe conditions other than the continuity of 
the logarithmic derivative of the wavefunction or to 
treat these problems by taking limits. 

In the n.s. translation we have 

(~ + E - V(x~ cp(x) = ° 
dx 2 'J 

where 

) 

Vo' 
V(x) = VI' 

, Va' 

x < ° ° < x <L , 
L<x 

(2) 

and the conditions (i) V 0 > E > V 1> (ii) cp(x) is infinitesi
mal for x E *R-R o' where Ro is the set of all finite reals; 
and (iii) the logarithmic derivative of cp (x) is Q conti
nuous. 

In our formulation all four potentials are "physical," 
since all four are "finite" square well potentials in the 
nonstandard universe. They differ only in the values of 
V 0' V l' and L. For a finite square well potential the 
solution of (1) is well known. Since (2) contains only 
internal objects, by the transfer theorem its solution is 
given by 
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exp(knx) , x < 0 

Pn - ikn P + ik 
:.!!..--.!!. exp(iPnx) + n n exp(-ip x), 

2Pn 2Pn n 

O<x<L, 

k2 + p2 
n n sinPn exp(knL-knx), L<x 
2knPn 

where en is determined by normalization, Pn and kn 
satisfy the equations 2k~Pn (k; + p;)-~ == tanPn L, and 
En == P; + VI == V 0 - kn • Observe that for n E N: 

(a) For the finite square well VO,VI and L E R, thus 
kn E Rand O[exp(knx)] == exp(kn Ox), 01>n(x) is the well
known solution of (1). 

(I'l) For the infinite square well VI == 0, Vo =::: + 7] (7] 

positive infinite), and L E R. Thus Pn = (En)1/2 is 
finite, and 0[2knPn (k; + p;)-l ] == 0[2(En )1/2 (7] + En )1/2 
1/-1] == 0 == DtanpnL,i.e., 0PnL :;:: mf or 0Pn :;:: ntTL-l. 
Again, 01>n(x) is the known solution of (1). 

(y) ForVo:;;:O, V1 =:::-AL-l, O<AER,andO<Lin
finitesimal, i.e., the 0 -function potential of strength -A, 
we have 2(-En)1/Z(AL-l + E )1/2A-l = tanfL(AL-l + 
En)1/2). Thus, 0(_En)1/2 == 'b{1/2AL-l(AL-l + E n)-1/2 
tan[L(AL-1 + En)l/Z]} or 0(_ En)l/2 =::: 1/2A, again lead
ing to the known solution of (1). 

The transfer theorem ensures that all representations 
of the 0 function lead to the same 01>(x),Le.,to the uni
que solution of (1). 

(0) For Vo = 0, VI == -AL-2, 0 <A E R,and 0 < L in
finitesimal, i.e., the Singular square well, we have 

2(-En)1/2(AL-2 + En)1/ZA-IL2 = tan[(A + L2En)1/2]. 

(3) 

Since En < 0 and A + L2En > 0, there are only a finite 
number of bound state solutions. They have infinite 
energies, since if En were finite in (3) the right-hand 
side would not be infinitesimal while the left-hand side 
would be. Evaluating cn from normalization we find 
that cn ;::b nL-l/2,wherebn is finite. Therefore,1>n(x) 
is infinite in the monad of zero and one cannot take the 
standard part of 1>(0). 

A more interesting case occurs when the potential in (1) 
is given by 

x < a,a > ° 
1 x> a,A > if 

As a -} 0, Va(x) becomes a singular potential. 

In the nonstandard formulation we have 

(L + E - Va(x~ 1>(x) = 0, 
dx 2 'J 

where 

x < a, a> 0 

x> a, A > t, 
(4) 

and the conditions: (1) E < 0; (ii) 1>(x) is infinitesimal for 
x E *R -R o; (iii) q;,(x) is Q continuous at x = a. 

Note that Va(x) is not an n.s. physical potential. 
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Let E = - k2 < 0, z = kx,and q;,(x) = l/I(z). Then by the 
transfer theorem the two linearly independent solutions 
of (4) are 

{O, z < ak 
l/Il(Z)==J 

{I (t-A )lI2 (z) Z > ak' 

Z < ak 

z < ak' 

Because of condition (ii) only l/Iz(z) is acceptable. De
note the zeros of K (1'-A)lIz (z) by Z 0' Z 1> ••• ,z m' By the 

4 

transfer theorem m is finite. Condition (iii) requires 
that k j = zja-1,i.e., Ei == -zra-2 for i = 0,1, ..• , m. 
Thus, we have a finite set of discrete eigenvalues. When 
a is infiniteSimal; the E j are infinite as expected on 
physical grounds. 

Next we determine the normalization constants. Using 
the transfer theorem we find that8 

{ 
0, 

1> .(x,a) = 
, b~/2a-1xl/2K(.! ,,' (a-1z .x) , 4-A ,.,2, 

x<a 

X2:a 

where 

b'? = 2Re[K (t-A y!z_l(zj)K (t_A)J/2 +1 (Zj»' 

, 

For standard a;>! 0, 0q;,j(x,a) is the well-known solution 
of (1). For infinitesimal a, q;, i(X, a) is infinite for some 
pOints in the monad of zero, and infinitesimal for x posi
tive and not infinitesimal. We also see that 0(q;,i{x,a1 ) 

1q;,/x,a2» = 0 when a l is finite and a2 is infinitesimal. 
That is q;, j(x, a} ~ 0 in the weak topology as a -~ 0, or 
q;,j(x,a) rotates out of H C *H into *H-H. The renor
mali zed operator e = a 2[(d2/dx 2) + (A/x211 also rotates 
in such a manner that (q;, i(X, a) I eq;, i(x, a» remains finite 
and independent of a. 

4. THE SCALAR FIELD 

In this section we give the n.s. version of the scalar 
field interacting with a (nonrecoiling) nucleon. 9 The 
form factor f(k 2) is taken to be the characteristic 
function 

X (k 2) == j 1 
~ )0 

for k 2 5 1/ 2 

otherwise ' 

where TJ is some infinite integar. 

The equivalent potential, under these conditions, differs 
infinitesimally from the Yukawa potential. We renor
malize the resulting theory. 

Following Ref. 9, we introduce the definitions: 

(i) Let:JC = F = En ,-*N F n be the n.s. Fock space. F 
will have *N mutually orthogonal axis, and the vectors 
in F have infinite,finite,or infinitesimal norms. 

(ii) The Hamiltonian H(TJ) == H 0 + Hiq), where 

H 0 = In 0 J dp l/I*(p)lJI(p)dp + J dkw(k)a*(k)a(k), 

HAr,) = A(21T)-3/2 J dp J dk 

x xn(k 2 )(2w(k»-1/2l/1*(p + k)l/I(p)[a(k) + a*(-k»), 

where l/I(p) , l/I*(p) and a(k), a*(k) are the destruction and 
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creation operators for the nucleons and mesons, respec
tively, w(k) = (k 2 + 1L2)1/2, IL is the mass of the meson, 
and m ° is the bare mass of the nucleon, and A is a coup
ling constant. 

(iii) The following commutation rules are satisfied: 

[I/I(p) , I/I(p')]. = [1/I*(p), 1/I*(p')]+ = 0, 

[a(k),a(k')] = [a*(k),a*(k')] = 0, 

[I/I(p) , a(k)] = [I/I(p),a*(k)] = 0, 

['J;*(p),a(k)] = [1/I*(p),a*(k)] = 0, 

[1/I(p) , 1/I*(p')]+ = o3(p - p') and [a(k),a*(k')] = o3(k - k'), 

where 

\ 0 x ~ 0 
o(x) =) 

. undefined for x = 0 
and 

jo(x)g(x)dx =g(O) 'fig E *L 2 • 

(iv) The vector 11),0) satisfying 1/I(p) 1'1), 0) = a(k) 1'1), 0) = 0 
'fIp and k is the physical vacuum. 

(v) The physical nucleon state 11), 1, p) is defined by the 
equation H(1)) 11), 1, p) = m (1)) 11), 1, p) and 1111), 1, p) II = 1, 
where m(1)) is the physical mass. 

With the aid of the transfer theorem using the results of 
pp. 341-44 of Ref. 9, we get 

(i) H( 1]) 11],0) = 0; 

(ii) H( 1])a*(k) 1'1), 0) = w(k) 11), 0); 

(iii) 1/I(p) * 11],0) is not an eigenstate of H( 1)); 

(iv) 11],I,p) =L:;nE*N jdqdk1'''dkn 
x cp (nJ(1),q;k1, ... ,kn)(l/n!)a*(k1)" 'a*(kn)I1], 0), 

where 

where 

z = ~ exp (In/l-ln['I) + (1)2 + /l2)1/2] + 1] ) 
41T2 \' ..j 1)2 + /l2 

{Le., infinitesimalfor finite A and behaves as 1)-A2
/4,,2 if 

rn(1]) = rno - (,\2/41T2)[1) - /l tan(1]/j.L)]; O[tan(1]//J)] = h}. 
For finite cutoff d the one-particle state Id, l,p) is in 
Fe *F. As d becomes infinite the one-particle 
state rotates to *F - F. As Ik; I increases the factor 
[2(21T)3w3(k;)]-1/2 behaves as Ik; 1-3/ 2. The volume 
grows as Ik; 12. Therefore, one is more likely to find 
mesons with large momentum than with small momen
tum. Hence as d increases the n meson state rotates 
out of Fn C *Fn into *Fn -Fn' To Id,l,p) the contri
bution ratio from the n + 1 and n meson states is pro
portional to [Ad/(n + 1)1/2]. Thus when d = 1) (infinite), 
the main part of (1),l,p) will come from U kE1 *FK+kfor 

II 

'Research supported in part by the Nation a! Science Foundation, 
Grants Nos. GP·29218 and GP·32996X. 

some infinite integer K and Ik = {I, 2, ... ,k} for some 
finite k. 

In accord with pp. 347-48 of Ref. 9 we define 

S~ = iA(21T)-3/2 j dp j dk X ~(k2)[2w3(k)]-1/2 

x ~(p + k)[a*(k) - a~*(p)] 

and 

1/I~(p) = eiS~1/I*(p)e-iS~ and a~(k) = eis~a*(k)e-iS~. 

Then Hr(1]) =Ho + HI (1]), where 
r r 

Ho = mo j dp1/lr(p)1/Ir(P) + j dkw(k)a:(k)ar(k), 
r 

H I ('I)) = A2(21T)-3 j dq j dp 
r 

X X ~(k2)[2w2(k)P1/l:(p + k)1/I:(Q)1/Ir(P)1/Ir(q + k), 

Le., with this rotation of the n.s. Fock space the Hamil
tonian no longer contains a self-interaction term, but 
contains interaction between "dressed" nucleons (nuc
leons with mesons clouds that contain most probably an 
infinite number of mesons with infinite momentum). 

The equivalent static potential is 

V(x-x')=,\2(21T)-3 jdk[2w2(k)]-1 exp[ik· (x-x')] 

= A2 exp{-IL Ix - x'I} + iA2 

81T I x - x' I 81T21 x - x'I 

(" '1)2 exp[i28 + i'l)(cos8 + i sin8)]. 
Jo '1)2 exp(i28) + IL 2 

The second term is infinitesimal for infinite 'I) and ° Ix - x'i =f O. For 8 in the monads of 0 and 1T the inte
grand is finite and, otherwise, the integrand is infinitesi
mal. Hence,if 0lx - x'i '" 0, OV(x - x') is the Yukawa 
potential. Moreover, the second term is infinitesimal 
compared to the first term even when ° I x - x' I = O. 

5. CONCLUSION 

We demonstrated the techniques of n.s.a. by working 
simple examples. In Sec. 3 we translated well-known 
one-dimensional bound state problems into n.s.lan
guage. We showed that potentials that are commonly 
called "idealized" or "limiting," are "physical" in the 
n.s.formulation. We showed how one recovers the 
standard results. 

In Sec. 4 we showed the use of n.s.a. in investigating the 
properties of the wavefunction as a given parameter 
tends to some limit. We saw how the wavefunction 
"rotated" out of ordinary Hilbert space. 

In Sec. 5 we found a field theory in which the equivalent 
potential differs infinitesimally from the Yukawa poten
tial. We saw how the vacuum vector "rotated" out of 
Fock space into the n.s. Fock space as the form factor 
became one on an infinite set. One may renormalize 
the infinite cutoff Yukawa theory, by defining the mass 
renormalized Hamiltonian H ren on a separable Hilbert 
space JC ren , extracted from *F. This construction is 
carried out for the A : cf>~: model in the sequel to this 
paper. 7 

, A. Robinson, Proc. Roy. Acad. 64, 432 (1961). 
'For a detailed treatment of nonstandard analysis see A. Robinson, Non·Standard 
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Analysis (North.Holland, Amsterdam, 1966). 
3W. A. J. Luxemburg,Non·Standard Analysis (California Institute of Technology, 

Pasadena, Calif., 1962). 
4 F is a free-ultrafllter on N if: (i) F is a nonempty family of subsets of N; (ii) the 

empty set !/IfF; (iii) N,EF andN2EF, thenN,nN2EF; (iv) N,EF andN,JN2 , 

thenN2EF; (v)N,CN, then either N,EF or N - N,EF; (vi) the intersection of 
an infinite number of distinct elements of F is empty. Note that (i)-(iv) establish 
the equivalence classes of sequences, (v) ensures that every sequence will belong 
to an equivalence class, and (vi) ensures that the equivalence classes are not based 

J. Math. Phys., Vol. 13, No. 12, December 1972 

on a single element of the sequence. For further detail see Ref. 3 or A. Voros, 
Introduction to Non-Standard Analysis (to be published). 

5 The * in the upper left corner carries an object from the standard universe into 
the corresponding object of the nonstandard universe. 

6 J OR is the extension of the linear functional JR' 
7p. J. Kelemen and A. Robinson, 1. Math. Phys. (N.Y) 13, 1875 (l972). 
8 G. N. Watson, Theory of Bessel Functions (Cambridge, London, 1966), p.134. 
9 S. S. Schweber, An Introduction of Relativistic Quantum Field Theory (Harper 
and Row, New York, 1961), pp. 339-348. 
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As a second step in the construction of the nonstandard x:¢1: model we analyze Glimm and Jaffe's work from the non· 
standard point of view. 

1. INTRODUCTION 

In this paper we analyze the A :¢~(x): model of quantum 
field theory using the tools of nonstandard analysis, 
n.s.a. The model was selected because it shows both 
the conceptual and the technical difficulties that one en
counters in building a nontrivial model of quantum field 
theory. These problems will become more transparent 
through explicit constructions within the framework of 
n.s.a. 

The A: ¢~(x): model was investigated by Glimm and 
Jaffe 1 in three papers to which we will refer as I, II, and 
III. For comparison between the nonstandard and stan
dard treatment of this model, we will restrict ourself 
to the subject matter covered and to the assumptions made 
in these papers. This permits us to concentrate on those 
aspects of this model where the nonstandard approach is 
advantageous. 

In I and II it is found that with a space cutoff g(x) imposed 
the theory is meaningful. There exists a self-adjoint 
operator on a Fock space; the Hamiltonian, that generates 
the time translations, provided the time interval is suffi
ciently short. The Hamiltonian possesses an isolated 
lowest eigenvalue, Eg of multiplicity one. The corres
ponding eigenvector Dg , the vacuum vector is an element 
of Fock space. However, as the support of g(x) grows, 
the vacuum vector seems to move out of the Fock space, 
Eg -? - cc and the Hamiltonian ceases to be an operator. 

In consequence, one is forced to change Hilbert spaces and 
to redefine the operators of the model. This renormali
zation is carried out in III using the GNS construction. 

In the n.s. treatment both for finite and for infinite cut
offs the Hamiltonian is an n.s. self-adjoint operator on 
an n.s. Fock space with a unique vacuum vector. For 
finite cutoff the vacuum vector is an element of the stan
dard Fock space which is imbedded in the n.s. Fock 
space. To renormalize the theory we map a certain sub
space of the n.s. Fock space onto a standard Hilbert 
space and redefine the operators. 

To carry out this program, we begin by describing n.s. 
objects such as * L 2 ( *R), n.s. operators, etc. (Sec. 2). In 
Sec.3 we outline the A: ¢~(x): model. In Sec. 4 we build 
the n.s. model, and in Sec. 5 we renormalize it. In Sec. 6 
we summarize our results and sketch lines of develop
ment that we intend to follow up in the future. 

2. NONSTANDARD PRELIMINARIES 

The method of n.s. extension that we are using in this 
paper is provided by model theory. 2 We considerR (reals), 
C(complex numbers), arithmetiC, analYSiS, L 2 (R"). D and 
D' (the spaces of test functions and distributions), F 
(Fock space), operators, and linear functionals on F as 

1875 

given within the framework of some structureM. Amodel 
of some nontrivial enlargement *M of M serves as our 
n.s. extension.3 

For what follOWS, it is unnecessary to construct an ex
plicit model for some specific enlargement *M of M. 

However, it is convenient to picture the n.s. objects. The 
model we select is such that *R, *C, *S, * F may be visual
ized through an ultrafilter construction.4 This means 
that a vector of * F can be pictured as an infinite sequence 
of vectors of F (reduced with respect to a certain equiva
lence relation.) 

For convenience we restate the main theorem of n.s.a. 

Transfer thearem: All true assertions about analysis 
remain true in the nonstandard model provided we re
interpret them as referring to internal objects only. 

See Ref. 2 for the notion of internal and external objects 
and Ref. 4 for an informal discussion of these concepts. 
We recall that any set, function, operator, operator alge
bra, etc. is either internal or external but not both. 
Among the internal objects are the nonstandard extensions 
of all standard objects. Thus, every function, set, opera
tor, etc., in standard analysis possesses a canonical 
extension to the nonstandard model. The ultrapower 
method provides a relatively concrete construction of 
internal objects. 

3. THE A : ¢~ : MODEL 

The model developed in I and II is a spin-zero boron 
field ¢, with a nonlinear, A: ¢~:, self-interaction with a 
space cutoff in two dimensional space-time. The field 
¢(x, t) is a bilinear-form-valued solution of 

-- - + m~ ¢(x, t) = - 4Ag(x)¢3(x, t), (
0

2 
0

2 
) 

ot2 ox2 
(1) 

where g(x) is a smooth positive function that equals one 
on some bounded interval and vanishes outSide some 
larger bounded interval containing the smaller one. In 
III the interval on which g(x) = 1 is increased indefinite
ly in some prescribed manner, i.e., through a divergent 
sequence of intervals. An infinite sequence of standard 
intervals is replaced by a unique n.s. interval. Hence, 
"removing the cutoff" is equivalent to selecting a cutoff 
in the n.s. model. 

The Hamiltonian corresponding to (1) is given by H(g) 
= H 0 + A.k : cf; 4(X) : g(x )dx, where H 0 is the free particle 
Hamiltonian. The corresponding vacuum vector is Dg • 

In I and II it is shown that for all finite cutoffs, Dg be
longs to F. Hence, D E *F even when suppg = (- 1], w) 
where 1] and ware iJinite positive numbers. It is be-

J. Math. Phys., Vol. 13, No. 12, December 1972 



                                                                                                                                    

1876 P. J. KELEMEN AND A. ROBINSON 

lieved that as the length of the cutoff increases 0 con-, 'lJ 
verges weakly to zero. 5 From the transfer theorem it 
would then follow that as the length of the n.s. cutoff in
creases, Og would converge weakly to zero in *F, i.e., 
there is no unique n.s. vacuum. 

On the other hand in II it was shown that if Xa'E suppg (x) 
and suPpg1(x) is large enough, then ¢gl(xa,ta) = ¢~(Xa,lta) 
when suPpg1(x) C suPpg2(x). Thus for finite (xa, ta), 
¢g(xa, ta) = cp(xa, ta) provided that (- 1/,1/) C suppg(x) for 
some infinite positive 1/. Note that ¢(x, t) is an internal 
operator for each finite (x, t), but the collection of ¢(x, t) 
for all finite (x, t) is an external set. 

After the above intuitive remarks we could proceed by 
translating into n.s.language all the theorems and lemmas 
of I, II, and m. In some cases the standard proofs plus 
the Transfer theorem would provide the n.s. proofs. In 
others, especially where limits are taken to remove the 
momentum cutoffs, the n.s.proofs would be shorter.6 
But a different approach is more useful here. We apply 
the Transfer theorem only to the results of I and II 
in building an unrenormalized n.s. theory. (This exem
plifies the fact that in building an n.s. theory one may 
incorporate as many of the standard results as desired.) 
We then extract from *F a standard Hilbert space JC 
which is identical with F ren' Inthe sequel to this pap~~ 
we will add external assumptions to the unrenormalized 
theory and find new interpretations. 

4. THE n.s. MODEL 

In this section we compile those n.s. definitions and 
theorems which define the n.s. model. The numbers in 
brackets after our numbering refer to the page on which 
the standard counterparts are found. 

Definition 1 [II-364J: The Fock space *F is the 
Hilbert space completion of the symmetric tensor alge
bra over L == *L 2(*R), 

*F = G(L) == ffinE*N*Fn' 

where * F n == L0 sL0s ' •• 0 s L (n factors) is the space of n 
noninteracting particles. For 1/1 E *F, 1/1 = {1/Ia, 1/I1.···} 
we have 111/1112 =~nE*N 1l1/ln 11 2• 

Definition 2 [11-364J: The no particle space *F a = *C 
(the complex numbers and'lo = {1, 0, 0, ... } E *F is the 
bare vacuum or bare no-particle state vector. 

Definition 3 [11-366J: The Hamiltonian H(g) acts on 
*F and can be written as H(g) = H a + AJ*R: ¢4(x) : g(x)dx 
= Ha + H/,g, where Ha is the free particle Hamiltonian; 
H1,g is the interaction cutoff Hamiltonian; and g(x) is an 
internal smooth positive function that equals one on an 
internal set B that contains in the interval (- 1/, 1), 1/ E 

* N, and vanishes off an internal set that contains B. 

Definition 4 [I-1946}: The domain Da == n D(Han). nE*N 

Theorem 1 [I-1949J: (a)H(g) is self-adjoint with do
main D(H(g» = D(Ha n D(H/ g); 

(b) H(g) is essentially self- . 
adjoint on Da. 

Definition 5 [[[-364J: Eg is the lowest eigenvalue of the 
equation 
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Theorem 2 [II-368J: There exists a vacuum vector 
Og for H(g). 

Theorem 3 [II-372J: The lower bound of H(g) is a 
simple eigenvalue. (Note that we got the above result 
with the transfer theorem. Therefore, the gap between 
E g and the rest of the spectrum may be infinitesimal 
but not zero. 

Definition 6 [1I-382J: Let j(x, t) be the extension of a 
Coo function that vanishes off the rectangle - n :S x, t :S n 
for some nE NC *N. Then Ag(f) == J*R¢g(x,t)f(x,t)dx 
and ¢g(f) is the closure of the operator defined by 

(1/1, ¢g(f)l/I) = J*R(l/I,Ag(f)1/I)dt, l/I E D[(H(g) + b)1/2], 

where b is a suitably large constant. 

Theorem 4 [II-388J: Ag(f) and ¢g(f) are self-adjoint 
operators. 

Theorem 5 [II-388J: ¢g(f) = ¢(f) provided (- 1),1/) 
C suppg for some 1) E * N - N. 

Theorem 6 [II-385J: 

1T(f) = ¢(- :tf) = tTH(g), cp(f)]. 

Remark: cp(f) is an internal operator when f(x, t) is 
the extension of a Coo function with support in the rec
tangle - n < x, t < n for some n E N; but the collection 
of all such operators is an external set. The importance 
of this fact cannot be over emphasized. Since cp(j) is 
internal its properties are determined by the standard 
operator that extends to CP(f). But there is no standard 
theorem that determines the properties of this external 
set of operators. This is why a renormalized nontrivial 
theory may exist. 

5. THE RENORMALIZED MODEL 

We reproduce the renormalized model of III. From *F 
we extract a standard Hilbert space ~en' Our method 
is equivalent to the Gel 'fand-Naimark-Segal GNS con
struction. We redefine the operator of * F on JC ren' 
Our construction illuminates the one employed in m. 
To make the connection between the GNS construction 
and our extraction of JC ren more transparent first we 
discuss a case in which the linear functional used in 
the GNS construction is simpler than the one used in 
Ip. Let Og be the vacuum vector for the cutoff g(x), let 
Coo == {f(x) If(x) = *h(x), h(x) E Coo and has compact 
support}. DefineS =={z E *Flz=ei¢<t1)"'ei¢(tk)n 

~ N}' g' fj E Cooj = 1,2, ... , k E ,and let JC be the subspace 
of *F spanned by S. Note that each element of Cooand 
of JC is internal, but that both Coo and JC are external ob
jects. We extract JC a from JC by discarding all vectors 
which have infinite norms. To get JC ren from JCa we 
collapse into a single vector those vectors which differ 
from each other by a vector of infinitesimal norm; and 
redefine the innerproduct by passing from (z l' Z2) to 
a(z1' z2)' Equivalently, map JC a into JC ren a subspace 
of some standard Hilbert space by the rule that if 
z 1> z2 E JC a and z 1 -'> b1, Z2 -'> b2, then a(z l' z2)*F = 
(b1> b 2 ) J~ren' 

The elements of the C*-algebra ct, generated by 
{ei¢(tll'f E Coo}, are operators on *F. From the Riesz 
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representation theorem we infer that the linear func
tionals on *F are innerproducts. In particular, the posi
tive linear functional cpU) of the GNS construction in 
this concrete case is O(Og,AO.[). Constructing the quo
tient space with the left ideall, I =- {r E (i I cp (T*T) :::;; O} 
amounts to our" collapsing" of the vectors 

The linear functional of the GNS construction employed 
in III is more complicated, because it uses an averaging 
process. As we will see the averaging serves two pur
poses. It ensures, first, that the energy per unit volume 
is flnite space translation invariant. 

To give the n.s. version of Sec. 2 of III we also take the 
cutoff function g(x) E Ceo to be nonnegative and equal to 
1 on (- 3, 3J, and define gn (x) == g(x/n), n E * N. The 
corresponding vacuum vector is denoted by n,.. As in 
III we fix an h(x) E Ceo with support in [ - 1, 1 that has 
the property jh(x)dx = 1. We use the notation E .(0') = 

J
. J 

ei¢",(fj) where lJ;",{J) = *RlJ;(X + OI.,t)f/x )dx and lJ; stands 
for either cp or 11. We <iefine 8(01., n) == {z(a) E *Flz(a) = 
E 1 (01.) .. ·Ek(OI.)n.., fj E Ceo, j = 1,2,"', kEN}, and 
X o(OI., n) c *F the subspace that contains only finite 
normed vectors and spanned by 5(0', n). To get xrfln,(n) 
we average the Xo(a, n) - s. The vectors in Xren\nJ 
satisfy the conditions that if ZI(O) and zz(O) map into 
b 1 and b 2 , respectively, then 

For the proper choice of n, say 7), X len (7) is identical 
to F ren of III. The only difference between the construc
tion of the two spaces is that in III (i is an abstract alge
bra while in the n.s. model it is an operator algebra. 
This is the case, because the space XO(O, n) on which 
(i is defined and leaves invariant is nonstandard. The 
innerproduct of the GNS construction in III is defined 
by the mapping of Xo(O, 'I) onto X ren ('I), since for any 
standard bounded operatorA,wn(A) = O(nn' *An..)"'F' 
and since a convergent subset of wn means selecting 
the corresponding 0 q' Note that 'I) is infinite, Le., 
7) E * N - N. Therefore g ij (x) is equal to 1 on an infinite 
interval that contains [ - 3'1), 3'1)J. But, by definition, the 
support of gn (x) is contained in [- k, k] for some 
K E '" N. Hence we have an infinite cutoff n.s. model, 
which means that the renormalized standard model with
out cutoff may not be unique. From the construction of 
X ren (7) we see the effects of the averaging by h(a). 
The mapping of XO(O, 'I) onto X ren ('I) leaves the norms 
invariant. Ej(OI.)E/OI.) = I, so that 

Ilbjll,o (ij) O([I/'I)jh(0I./7)(E1(0I.)· .. E k(OI.)Oq, 
,.J\ ... ren 

E 1(0I.)·· .Ek(OI.)S\)*FdOl.] = O[U/'I)jh(OI./n)(Oll,nlj)*FdOl.] 

O[(Oij,Oij)*F(I/'I)h(OI./7)dOl.J = (Oll,Oll)*F 

= (E 1 (0)· .. E k(O)Oll ,E1 (0)· •. Ek(O)Olj)*F' 

But the map changes the angles between some of the 
vectors. They become larger, i.e., their innerproduct 
smaller. 

It is easier to demonstrate some of the properties of 
Fren on Xren('I). For examples, 

(i) Hrfi/n is defined through the action of H(g ) on 
X o(O,7)). Thus, the spectrum of H ren is nonn~gative 
because the spectrum of H(gT/) is nonnegative. 

(U) Finite time translation invariance follows from 
the finite propagation speed and from 

(iii) To see that the model is finite translation invariant 
it is sufficient to observe that 

for all finite intervals Ii which is evident, since 7) is in
finite and IW

ll
,E1 (0I.)···Ek{0I.)S\)*FI:5 1 so that 

1(1/7) jl h(OI./7)(Oij' E 1 (01.) • .. E k(OI.» * FdOl.I :5 (1/7) 

x length (1) == infinitesimal. 

But there is yet another way to see this. 

(1/'1) j*Rh(OI./'I){O"" E 1 (01.) • •• E k(OI.)OT/) * FdOi. 

= (1/'1) f*Rh {OI./'I)(O 11 (",)E 1 (0)' •• E k(O)n ll ,,,,) *FdOl.), 

where Of/.'" is the vacuum vector of the g[(x - 01.)/'1)] 
cutoff. The last formula is interpreted the following 
way. For each 01. E (- '1),7)] we construct a renormalized 
Hilbert space corresponding to the vacuum 0

11
.", by the 

procedure given in the beginning of this section, and 
then we average over the renormalized Hilbert spaces. 
Clearly adding or deleting Hilbert space corresponding 
to a finite interval cannot affect the average. 

6. CONCLUSIONS 

In Sec.4 we constructed an n.s.'\: cp~: model with an 
infinite cutoff. In Sec. 5 we recovered the renormalized 
Fock space. 

Nonstandard analYSis allowed us to work with operators 
on a Hilbert space, instead of an abstract operator alge
bra, and to employ intuitive ideas which are not avail
able in the standard approach. It illuminated several in
teresting features of the renormalization. In ill a re
normalization by averaging is employed in addition to 
the energy renormalization by the subtraction of an 
infinite constant. This averaging "opens" the Hilbert 
space, i.e., it diminishes the inner product of two vectors. 
Vectors that are close together in Xren('I) came from 
vectors that were even closer in *F, and, hence, the 
finite space translation follows. This" opening" also 
decreases the energy density. On the other hand, this 
averaging procedure does not decrease the cardinality 
of the set of the baSis vectors of Xren\'I). If the re
normalized model constructed without averaging is only 
locally Fock, then the renormalized model constructed 
with averaging can be locally Fock only. 

As it was pointed out, X ren constructed without an 
averaging is already an external subspace of *F. Hence, 
no standard theorem about F is transferable to F ren 
directly by the use of the Transfer theorem. In par
ticular, there is some hope that no analog of the Haag 
theorem will apply to F ren' This statement demonstrates 
that it may be advantageous to investigate standard 
models with n.s. methods, bringing into play the distinc
tion between external and internal objects. 

Other approaches to the problem of finding a renormalized 
,\: cp~: model suggest themselves: (i) Retaining an in
finite momentum cutoff may remove some of the diffi
culties. (ii) USing periodic boundary conditions, of 
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infinite period, both in momentum and in position space 
would allow one to use n.s. Fourier series. (iii) Quan
tizing position space in an infinite box with rigid wall 
has its obvious advantages. 
Field theory is probably best formulated on a non
separable Hilbert space. The logical candidate is *F. 
Having an established n.s. model (Sec. 4) one should check 
whether or not it satisfies a modified n.s. version of 
the Wightman axioms. We found in this paper that 
modification by external assumption is necessary. One 
can only require invariance for finite translations. 

* Research supported in part by the National Science Foundation, Grant No. 
GP-29218, and in part by the Air Force Office of Scientific Research under 
Grant No. AFOSR-71-2013. 
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Thus in the n.s. version of the Wightman axioms one 
should use the phrase" finite Lorentz transformation." 
What modifications, if any, are needed to assure that we 
do not need to average by h(x) is not clear. Hopefully, 
one of the three approaches mentioned in the preceding 
paragraph will provide the answer. 
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Some properties of the intertwining operations, which carryover certain infinite-dimensional, reducible (but not 
completely reducible) representations of the restricted Lorentz group into finite-dimensional (irreducible) representations 
are studied. 

1. INTRODUCTION 

In the study of asymptotically flat solutions of the Ein
stein 1 or Einstein-Maxwe1l2 equations, one naturally 
considers functions of three variables defined on null 
infinity. If null infinity has an S2 x R 1 topology (as is 
usually assumed) these functions can be viewed as time
dependent functions on the unit sphere.3 Due to the fact 
that part of the asymptotic symmetry group4 is the 
homogeneous Lorentz group L, these functions possess 
relatively simple transformation properties. In fact 
many of them transform as vectors in the representa
tion space of a reducible (but not completely reducible) 
infinite-dimensional representation of the group L. 
From the theory of these representations, it is known 
that these spaces possess invariant subspaces and that 
frequently (depending on the type of representation) 
finite-dimensional representations can be constructed 
from the factor spaces. 

Although it is common (in the study of asymptotically 
flat spaces) to assign to some of these tensors (asso
ciated with the finite-dimensional representations), a 
definite physical meaning such as energy-momentum, 
center-of-mass-angular momentum, 4-velocity, etc., it 
is not our purpose here to study the physical questions 
raised by such identifications. We will be concerned 
only with certain mathematical results having to do 
with the reduction of the infinite-dimensional represen
tations to the finite-dimensional ones. These results, 
which deal with the reduction of products of infinite 
with finite-dimensional representations, though of in
terest in themselves, are to us of fundamental impor
tance in analyzing asymptotically flat spaces. In the 
paper following this one we apply these ideas to the 
problem of equations of motion in general relativity. 

It has been established through the use of the isomor
phism between the conformal group of the sphere and 
the homogeneous (restricted) Lorentz group that the 
functions in question are the spin and conformally 
weighted functions on the sphere. Although the basic 
ideas come from the beautiful work of Gel'fand etal.,5 
we use the notation and techniques of Held, Newman, 
and Posadas (HNP),6 which are reviewed in Sec. 2. 
In Sec. 3 we establish a link between tensors in Min
kowski space and functions on the sphere with finite 
expansions in spin s spherical harmonics. 7 Section 4 
contains the main results concerning the reduction of 
products of finite with infinite-dimensional represen
tations. 

2. THE LORENTZ GROUP AND THE SPHERE 

By introducing the complex stereographic coordinate 

~ = ei<p code, (2.1) 

the standard line element of the unit sphere 

ds2 = de 2 + sin2ed¢2 

can be rewritten in the form 

ds 2 = dsd~ , 
P5 

where Po = ~ (1 + s~). 
Under the fractional linear transformation 

s' = (as + b)/(es + d), ad - be = 1, 

(2.2) 

(2.3) 

the metric of the unit sphere transforms conformally, 
Le., 

ds'd~' _ K2 dsd~ 
P;z- p2 

o 0 

(2.4) 

with conformal factor K given by 

K = rl/ 2 Po/P6 

= (1 + s~)[(as + b)(a~ + b) + (es + d)(c~ + (1)]-1, (2.5) 

where 
r 1 = ds' . d~' . 

ds ds 

From (2.3) we can also define the function A(s,~) by 

eiA. = (d~' /d~)1/2 = e~ + ~ , 
ds' /d~ c~ + d 

(2.6) 

where A is interpreted geometrically as the local angle 
of rotation of the two coordinate grids, ~ = const and 
~' = const (after rotation). 

Infinitely differentiable functions on the sphere, 7J(S,w)(~,~), 
which are expandable in spin s spherical harmonics 

7J(s.u)(C~) = 6 aim sY lm (S, ~), 
Ie's I 

and which transform under (2.3) as 

are said to have spin weight s and conformal weight w. 

Because (2.3) is isomorphic to the restricted Lorentz 
group, it is possible to show that such functions, which 
transform under (2.3) with s an integer or half-integer 
and w any complex number, form the vector space of a 
representation of the restricted Lorentz group that can 
be labeled by (s, w). These representations are not 
necessarily irreducible, although a converse, namely 
that all irreducible representations are realizable on 
these spaces, is true. 
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For our purposes it will only be necessary to consider 
the representation labeled by (s, w) and (S' = - S, Wi = 
-w- 2) :=(- s,-w- 2),suchthat 

sand ware both either integer or half-integerS (2.8) 
and w 2:: I s I. 

The vector spaces associated with these representations, 
denoted by D(s.w) and Db, _ w-2)' respectively, turn out 
to be quite intimately related to one another. Both are 
reducible, but not completely reducible, possessing the 
respective invariant subspaces denoted by E (s,w) and 
F(-s,-w-2), such that the irreducible factor spaces D(s,w)/ 

E(s,w) and D(-s,-w-2)/Fh ,-w-2) satisfy the isomorphisms 

D(s,w)/E(s,w) "" F<-S,-w-2) 
and 

D(s, - w-2)/ F(_ s, -w-2) "" E(s,w)' 

E(s w) is finite-dimensional and spanned by the basis 
vectors sYlm> I s I :'0 1:'0 w, while F <-S, _ w-2) is infinite
dimensional and spanned by the basis vectors -sYlm , 

I> w. 

If 

and 

00 

~(-s, - w-2) = 6 
10 lsi 

00 

-
aim -sYlm EO D(-s,-w-2) 

CfJ(s,w) = 6 blm sYlm EO D(s,w)' 
I ~ I s I 

then the mappings from D(s,w) --) F<-S,-w-2) and 
Db, -w-2) --) E(s,w) can be given explicitly as follows: 

w 

'I1(s,w) = 6 aim sYlm = 1T(s,w) ~(-s,-w-2) EO E(s,w) , (2.10) 
1 0 1 s I 

where 

1T (s,w) ~h. - w-2) := J M(s,w) (~, ~; ~' ~I) i)<-s,-w-2J (~' , ~') dn I 

with dn ' the area element of the unit sphere and 

M(S,W) (~,~; ~I~I) 
W I 

= 6 6 
lelsl me --I 

(_ 1)I+S (w + lsi + 1)!(w- lsi)! 
(w + 1 + 1)!(w-l)! 

- - -
X sYlm(~'~) -sYlm(~I, n. (2.11) 

The factor space D(s,w)/E(s,w) is also isomorphic to the 
two equivalent representations D(w+l, s-l) s; D(-w-l. -s-1), 

so that if 'I1(s,w) EO D(s,w)' then the mappings appropriate 
to these isomorphisms are given by 

/I _ i<w+s+l'11 EO D 
'11 (-url,-s-l)- U "(s,w) (-w-l,-s-I)' 

(2.12) 

(2.13) 

The mappings (2.9), (2,10), (2.12), and (2.13) are all in
variant under (i.e., commute with) the restricted Lorentz 
transformations (2.3)-. 

3. E(s, w) AND TENSORS IN MINKOWSKI SPACE 

At a point in Minkowski space, we consider the family of 
all null directions (the null cone) parametrized by the 
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points on a unit sphere. These (normalized) null vec
tors have the form 

lp(L~) = (1/2{2Po)[1 + ~~, I;; + ~,(I;; - ~)/i,- 1 + ~~] 

= {21T [oYoo, (- l/.j6)(oYll - OY1 - 1 ), (i/-J6)(oYll + OY1- 1 ), 

(1/f3) oY10 ]. (3.1) 

For each null direction, one can define three additional 
vectors: 

(3.2a) 

(3.2b) 

Together with III they satisfy the standard null tetrad 
orthogonality conditions 

liln = - mllm = 1 
P Il' 

(3.3) 

all other scalar products vanishing. In addition, for each 
null direction, we have the completeness relation 10 

(3.4) 

where 'I1
1l

" is the usual Minkowski metric 'I1P" = diag(l, 
- 1,- 1,-- 1). 

Thus, at a point in Minkowski space we have constructed 
a family of null tetrad systems that are parametrized 
by the points on a sphere. That is, the tetrad (II' (( , ~), 
nP ((,~), 111 P (~, ~), mil (~, ~) may be viewed as being a 
function on the sphere. If we contract a Minkowski ten
sor, at the point in question, with one or more of the 
tetrad vectors and allow the direction to vary over the 
sphere, the tensor will also be converted into a function 
on the sphere. 

Under a restricted Lorentz transformation, Le., under 
(2.3), the tetrad transforms as 

lip = KIp, 

m'p = eiA(mll + Hlll), 

nip = K-l(n p + HmP + HIilP + HHlll), 

(3.5) 

(3.6) 

(3.7) 

where H := (5 10gK with K given by (2.5) and A by (2.6). 

We now wish to discuss the connection between irredu
cible Lorentz tensors and elements of E (s,w). In particu
lar we will restrictll the discussion to trace-free ten
sors with the following symmetry properties: 

and 
BPl"11l2 v2'''PS"S = B([lllv1J [P2"2 l "'[PS",J) 

and show that 

are elements of E(O,w) and E(s,,) ' respectively. 

From (3.5) and (3.6) it is clear that 

and B' = KseisAB 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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under (2.3), so that A and B have the correct transfor
mation properties under the restricted Lorentz group. 

All that remains now is to show that A and B have the 
following expansions in spin s spherical harmonics: 

w I 

A = 6 6 Aim oYlm , 
1=0 m -I 

m=-s 

(3.14) 

(3.15) 

Ey definition l~ consists onl~ of I = 0 and 1 = 1 spin
zero spherical harmonics (Ci5lp = 0) and ll~JilvJ is a 
purely 1 = 1 spherical harmonIc [Cio(l~JnvJ = Cio(l[~CiOlvJ) 
= OJ, so that applying CiO'+l to A in (3. Il) and Ci o to B in 
(3.9) leads to CiO'+l A = CioB = 0, and (3.14) and (3.15) 
follow immediately. 

As examples, the vector v = (vO, vI, v2, v3) is related to 
the function 

v = VJ11J1 

_ rn=2 0 Y _ /2rr (( v' + i v 2) Y + 3 Y 
- V L.7f V 0 00 j 3 (2 0 1-1 V 0 10 

and the anti symmetric tensor 

r 
0 501 

- 501 0 
5-- _ 502 _ 5 12 

_ 503 _ 5 13 

is related to the function 

502 

5 12 

o 
_ 523 

503

J 
5 13 

523 

o 

5 - 5~V I m - - (-3" 7f)1/2 (503 + i5 12 ) Y - ~ v-I 10 

(t7f)1/2 (513 + i502 )(lYll + 1Y1-1) 

(3.16) 

+ (t7f)1/2(501 + i523 )(lYll- 1Y1-1) E E(1,1).(3.17) 

We show, by example, how elementary tensor operations 
such as products and contractions can be performed on 
the equivalent functions on the sphere. 

Suppose a == a~lJ1 and b == bJ11J1 are elements of E(ol) , 
A == AJ1)"'J1w 1 •.. 1 E E(O ) and B == BJ1IJ l 1ft E 'E(l,l) , 

J11 J1 w ,w J1 v 

then if CJ1V == a(llb v) - taaba'IJJ1U, 

(1) C == CJ1U11llu = ab - taab",'lJJ1ulJllu = ab E E(0,2) , 

a"'bS'IJ as 

aabB(lans + nala - me/nB - matllt) 

aab B(21 a1e + laCiO~olB + 1BCiO~Ola 
- -

- CiOlaCiol a - CiolaCiol a ) 

(3.18) 

2ab + aCio~ob + bCio~oa-Cioa50b - Ci ob50a 

E E(O,O)' (3.19) 
Similarly, 

(3) AJlI"'Jlw-Ia a I '" 1 
a III #lW-l 

= [(w + l)/w J Aa + ACiO~Oa + (1/w 2) atlo~oA 

- (l/w) CiOA~a - (l/w) ~oA(50a E E(O,w-1) ' (3.20) 

where the vanishing of the trace of A~)'" i'w, 

= 2AJ11'" i'w-2 Ltb(l 1 + 1 '0 5 1 - (5 1 5 1 ) 1 · •• 1 
Q B ex 0 0 B 0 Q 0 b J1 1 i'w-2 ' 

(3.21) 
has been used: 

(3.22) 

From these examples it is clear that by simply using 
'lJ J1U in the form (3.4), any inner product can be expressed 
completely in terms of spin and conformally weighted 
functions on the sphere. 

In the next section we will use these and similar re
sults, together with the mapping (2.10), to obtain tensor 
expressions (with algebraic manipulations) directly 
from functions in D(_ s, - w-2) • 

4. APPLICATIONS OF THE MAPPING 
D(-s,-w-2) -> £(s, w) 

Given the functions i\0,-W-2) E D(0,w-2) and 5(-8,-5-2) E 

D(-s,-s-2) ' by the application of (2.10), we immediately 
obtain 

7f(0,w)T(0,-W-2) = T(O,w) 

and 

where Till" 'J1w and 5Jllvl'''J1sVs are tensors in Minkowski 
space with the symmetries (3.8) and (3.9), respectively. 

Suppose, for example, we have a function V E D(O, 1)' 

from which we should like to obtain another function v, 
which is in the invariant subspace E(O,l) c D(O, 1)' Be
cause there is no invariant mapping of D(O, 1) -7 E(o,l) 
this cannot be accomplished directly. However, we can 
form the function V- 3 E D(O, -3) and then use 7f (0,1) on it 
to obtain 

(4.3) 

By writing v = Vo + VI (where the subscripts refer to 
the 1-values of the subscripted quantities) it is clear 
from (2.11) that V-3 can be expressed as 

V-3 = Vo - 3v1 + 0(1 = 2). (4.4) 

[O(l = 2) means the expression is expandable in harmo
nics with l2: 2.] Let us examine what happens when we 
form the function V-3 v E D(0,-2) and apply 7f(0,0) to it: 

7f(0, 0) V-3 v = 7f(O,O){[vo - 3v1 + O(l = 2)J[vo + v 1 J} 

= 7f(O, 0) [v6 - (VI + 'O Ov150v1)0 + O(l = 1)] 

= v2 + vCi 050v - Ciov~ov 

= tvav ex , 

where (3.19) and the identity 

VI == (t VI + tCi ov150v1)0 + (ivi - t(5ov150V1)2 

have been used. 

If the function V is such that vJl is timelike and has the 
normalization 
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(4.5) 

we will refer to vi' or v as a unit 4-vector and obtain in 
this case 

1T(0.0) V-3 v = t va va = 1. (4.6) 

For any unit vector we can show that 

(4.7) 

is satisfied identically in the following way. Choose 
K = v- 1 and thus use the Lorentz transformation (2.3) 
to put v = 1. The proof of (4.7) is trivial in this frame 
and the Lorentz invariant nature of (2.10) guarantees 
the result in general. 

By putting w = 1 in (4.7) we see immediately that the 
use of (4.3) to define a unit 4-vector v E E(0.1) from a 
properly normalized function V E D(0,1) was a good 
choice in that it not only still holds but becomes an 
identity for the case V = v. 

Essentially the same method that led to the result (4.6) 
can be used to generalize it t~ the following: Given a 
tensor T!ll"'!lw defined from T E D(0.-w-2) by (4.1) and 
any vector v, then 

1T )Tv= [w/(w + 1)]Ti'l'ooJlw-l a v 1 .. ·1 • (4.8) (O.w-1 a Jl l Jlw-l 

The inner product between a vector and a tensor of the 
type (4.2) must be handled somewhat differently than 
the previous case, as the following example will illus
trate. 

Given the antisymmetric 2nd rank tensor SJl u obtained 
from 5 E D(-1. -3) by 

(4.9) 

and the vector v = VJlli' , how do we go about finding a 
function from which we can obtain SJla va IJl by applying 
1T(0.1) to it? 

We know that the function must be linear in both 5 and 
v and have conformal weight w = - 3. The function 
must also have spin weight s = 0 so that it will be 
necessary to use the spin raising operator 50' But 
(2.12) tells us that in order to obtain something with 
good spin and conformal weight, 50 can only be applied 
to a function having s = w in the first place. 

The simplest function we can form satisfying all of 
these requirements is v- 150(5v2). After working out 
the details we indeed discover that 

Re1T(0.1)[v-1 50(Sv2 )] = tSJlavalJl' (4.10) 

The proof of (4.10) proceeds as follows: Write 
S = 51 + 52 + 0(1 = 3) and v = Vo + VI' Then, 

Re1T(0.1)[v-1 50(Sv2)1 _ 
= Re1T (0.1) [v5 0S + 2S50v] 

= Re1T(o.d(vo + v1)(5 051 + 5 052 ) + 2(51 + S2)50v1 

+ 0(1 = 2)] 

= Re1T(o.d(- t V1'6 0S1 + tS15 0v1 - 1;50v1'66 SI)O 

+ (v050S1 + SI'6 0V1 + tgovl'6~SI)l + 0(1 = 2)] 

= Re(- t v50S1 - tiiovl'66S1) 
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= tRe[v3g0(S/v2)] 

= t SJlav"lJl' 

where we have used (3.22), the identities 

and the fact from (4.9) that 

gos == - 5 051 , 

Based on the preceding examples, we see that the general 
procedure for constructing tensors from the infinite
dimensional representation spaces is as follows: We 
start with functions that are expandable in spin-weighted 
spherical harmonics and which transform under (2.3) 
with spin-weight s' = - s and conformal weight w' = 
- w - 2, where sand ware integers satisfying w ~ 1 s I. 
Then we use the mapping (2.10) to define tensors in 
Minkowski space from these functions. Finally, we de
rive relations between products of the spin-weighted 
functions and products of the tensors, similar to (4.6), 
(4.8), and (4.10), that may be useful to us. 

We conclude by giving some further examples, which 
happen to be of particular interest in the study of gravi
tational radiation reaction is asymptotically flat spaces. 
Because the method of proof is basically the same in all 
of these cases, the results will simply be stated without 
additional proofs. Some results that have already been 
given will be included for convenience. 

Suppose we are given the following functions on the 
sphere: 

V = V(u, L~) E D(o.1j,12 

P = P(u,L() E D(0.-3) , 

T = T(u, t;,~) E D(o,-S) ' 

S = S (u, t;,~) E D(-1. -3) 

(4.11a) 

(4. lIb) 

(4.lIc) 

(4. lId) 

We can define the following tensor quantities from these 
functions: 

1T (0.1) v- 3 = V == vl'll' ' 

1T (0. 1) jj = P == pill I' ' 

1T(0'3)T = TI'UP11'1u1p' 

1T(1.1)5 = S == SI'Ulllmu' 

1T(1. 1) (- is) = is = *SI'V III rnu' 

(4. 12a) 

(4. 12b) 

(4. 12c) 

(4. 12d) 
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where *S~v == ~ EIJVpa Spa is the dual of Sl"v. Normalizing 
V such that 

(4.13) 

We can then derive the following additional relations 
among these quantities in the manner of (4.10): 

(4. 14a) 

1TeO.l)[V-115050C5v3)] = - 2(p - mv) = - 2(pl" - mVJl)ljJ 

(4. 14b) 

(4. 14c) 

::::; 1· 

Re1Teo. 1) [ v- 115 0 (Sv2)] = 3 S~a Va II" ' (4. 14d) 

Im1TeO.l)[v-1150(Sv2)] = - t* s~avaIjJ' (4.14e) 

'This research was supported in part by the National Science Foundation 
under Grants GP-19378 and GP-22789. 

'E. T. Newman and T. Unti. J. Math. Phys. (N.Y.) 3,891 (1962). 
'A. Exton. E. T. Newman, and R. Penrose, J. Math. Phys. (N.Y.) 10, 1570 

(1969). 
3B. Aronson, R. Lind. J. Messmer. and E. T. Newman, J. Math. Phys. (N.Y.) 

12, 2462 (1971). 
'II. Bondi, M. van der Berg, and A. Metzner, Proc. Roy. Soc .• London 

269,21 (1962); R. K. Sachs, Proc. Roy. Soc., London 270, 103 (1962). 
'I. M. Gcnand, M. I. Gracv. and N. Ya. Vilcnkin, Generalized Functions 

(Academic. New York. 1966). Vol. V. 
6A. Held, E. T. Newman, and R. Posadas, J. Math. Phys. (N.Y.) 11, 3145 

(1970). 
'E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 7, 863 (1966); 1. N. 

Goldberg et al .• J. Math. Phys. (N.Y.) 8, 2155 (1967). 
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(4. 14f) 

- 1 :2 
1Teo,l) Tv2 = "2 Tl"aBVaVs II" = 3 TJlav all" == TjJ1Jl' (4. 14g) 

1Teo.o) Tv3 = i TaByv aVSVy = t TaBVaVs = ~ Tava, == T, 
(4. 14h) 

1TeO.l) Tv2 = ~ Tl"aB V aVe II"' 

1TeO.l)[v-115050(Tv4v)] = (Tava,VI"- tTI"CX,va)lJl' 

(4. 14i) 

(4. 14j) 

(4. 14k) 

1TO,l)[V'250(Tv4V)] = - 2(TjJCx v ex vv - TvaVaVI")ljJlJtv , 
(4.141) 

1Tel,l)[Tv350(V/V)] 

= (TI"Uv",Vv - Tvexvcxvl" - Tl"cxvcxVv + TVCXVavl")IJllnv' 

(4. 14m) 

in fact, irreducible, infinite dimensional, and equivalent to the representation 
labeled by (-s,-w,-2). 

''Ifr/,=2Pb' s a(pgs1)s)/a~, where Po is given by (2.2) and 1), is a function on 
the sphere expandable in spin s spherical harmonics. Further properties of 1)'0 

may be found in Ref. 7. 
IOParentheses enclosing indices denote symmetrization and brackets, 
antisymmetrization. 

"The general connection between irreducible tensors and can be most easily 
obtained from spinor analysis (see HNP); but for our purposes the special 
cases considered here are sufficient. Actually, by multiplications and 
contractions of our cases. the general connection can be found. 

12The timelike coordinate u. which we have introduced at this time for 
completeness, will have no effect on the techniques that have been developed 
in this paper since they depend only on the angular coordinates ~ and f. The 
deriyative of a function with respect to u will be denoted hy a dot, i.e .. df!du 

==f. 
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We present an exact calculation that leads to the equations of motion (which naturally contain gravitational radiation 
reaction terms) of a system subject to no external forces. The novelty of our approach lies in the fact that the system is 
to be considered as the source of an asymptotically flat space and that all the revelant physical quantities such as the 
velocity v", 4-momentum p", angular momentum-center of mass tensor Spv (as well as higher moments) are then 
defined in terms of surface integrals taken at infinity. A subset of the Einstein equations (equivalent to Bondi's 
supplemantary conditions) then yields the time-evolution equations for these variables. 

1. INTRODUCTION 

The study of equations of motion in general relativity 
is of great interest due (among other reasons) to the 
fact that, among physically interesting classical fields, 
the Einstein field equations are the only ones which de
termine the motion of their sources. This is basically 
a result of the general covariance and nonlinearity of 
the theory. 1 In other field theories, such as electro
magnetic theory, the equations of motion must be postu
lated separately. 

Another important area of study in general relativity 
has been the investigation of asymptotically flat spaces. 
Originally, these investigations were based on reasonable 
guesses concerning the behavior of the metric as spatial 
infinity was approached. The situation was greatly im
proved by the work of Bondi el al,2 and then Sachs3 who, 
utilizing the idea of approaching infinity along charac
teristic (or null) surfaces, determined from simple 
conditions the asymptotic behavior of the metric tensor. 
A further development was the spin coefficient forma
lism4 (NP) and its applications 4 ,5 (NU) in which the 
emphasis was shifted from the metric to the Weyl Ten
sor and its behavior in the vicinity of null infinity. 

It is the purpose of this paper to apply the ideas and 
techniques developed in the study of asymptotically flat 
spaces to the subject of equations of motion in general 
relativity. The notation we use is that of the spin co
efficient formalism. 

Although the essential ideas are very simple, the imple
mentation of them is quite complicated, involving some 
very powerful results from the theory of infinite
dimensional representations of the Lorentz group. 
Basically we are conSidering a finite physical system 
and studying its properties at future null infinity. The 
basic physical variables of the system, such as the 
energy-momentum vector, the angular momentum-cen
ter of mass tensor, 4-velocity (and possibly higher mo
ments) are defined by certain surface integrals over 
asymptotic values of the fields. The field equations (or, 
more specifically, the Bianchi identities or the supple
mentary conditions in Bondi's terminology) then yield 
the time evolution of these physical quantities and thereby 
constitute the equations of motion. We emphasize that 
we are concerned with the motion of a single composite 
system and not with the relative motion of its component 
parts. (We are thus, for example, not dealing with the 
two-body problem.) The final result (arrived at with no 
approximations) will resemble the equations of motion 
of a free particle with intrinsic angular momentum, but 
modified by radiation reaction terms arising from accel
erations and changing quadrupole and higher moments. 

The entire idea is almost perfectly analogous to defining 
electric charge in claSSical electrodynamics by a sur
face integral (Gauss' Theorem) at infinity and then using 
the vacuum Maxwell equations to prove that it is con
served. 

In Sec. 2 we present a detailed review of the properties 
of asymptotically flat spaces. Although it is in essence a 
review of (NU), considerable modification and simplifi
cation of notation is achieved through the use of the 
operator () and the notion of spin weighted functions. 
Here we shall find the time development equations for 
the tetrad components of the Weyl tensor which impli
citly contain the equations of motion. 

In Sec. 3 we investigate the asymptotic symmetry group, 
the so-called Bondi-Metzner-Sach (BMS) group 2,3 ,5-9 

expressed in a very general null coordinate system. 
Utilizing the idea of the Winicour-Tamburino linkages 10 

and the generators of the BMS group we find, in Sec. 4, 
integral expressions which are identified (by definition) 
with the energy-momentum 4-vector and the angular 
momentum-center of mass tensor of the source. They 
will be referred to as physical quantities or tensors. 
We point out that, although these quantities transform 
properly under the homogeneous Lorentz group (which 
is well defined in asymptotically flat spaces) and agree 
with expressions obtained from source properties in the 
linear theory, one cannot say with complete confidence 
that they are the unique expressions for the physical 
quantities. Any reasonable modification of the definitions 
would, however, not fundamentally change our final 
results. 

In Sec. 5, there is first a review of some results from 
the preceding paper, 11 which relate (by integral opera
tors) infinite-dimensional representations of the homo
geneous Lorentz group to finite-dimensional ones. These 
integral operators are then related to the integral ex
pressions (Winicour-Tamburino linkages), which have 
been identified with physical quantities. Finally, by 
applying the integral operators to the Bianchi Identities 
(after much manipulation), we obtain the evolution equa
tions (or equations of motion) for the physical quantities. 

Section 6 is devoted to a discussion of the coordinate free
dom, or more preCisely, to an attempt to eliminate the 
coordinate freedom. First, we use coordinate conditions 1 ~ 
(different from the Bondi type), which are associated 
with" canonical" slicings of null infinity. These canoni
cal slicings are generalizations of the slicings of future 
null infinity in Minkowski space, produced by the families 
of light cones emanating from arbitrary timelike world 
lines. From these slicings we conjecture that a unique 
one exists which can naturally be called the center of 
mass coordinate system. 
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2. THE ASYMPTOTICALLY FLAT SOLUTIONS 

In this section we present a review of the asymptotically 
flat solutions. In a four-dimensional Riemannian space 
of signature (+, -, -, -), one introduces a null tetrad 
Z a = (z ,n ,m ,In;J composed of two real null vectors 
l ~na n ~ arfd t;o complex null vectors m ~ and m~, with 
the pseJ'do-orthogonality properties 

I ~ n~ = - 111 ~ m~ = 1, (2.1) 

all other inner products vanishing. 

Equation (2.1) implies the completeness relation 

(2.2) 

or 12~V = ZmvZnv1)mn, where 1)mn is the null Minkowski 
metric 

1)mn lOI ° OJ 
10 ° ° - - 1) - ° ° 0-1 - mn' 

00-1 ° 
(2.3) 

which is used to raise and lower tetrad indices.1 3 

A null coordinate system and its associated null tetrad 
system Za~ is introduced by first conSidering a family 
of null hypersurfaces labeled by a parameter u = const, 
i.e., 

g~ Vu u = 0. 
.~ .v 

(2.4) 

(A comma denotes ordinary partial differentiation and 
a semicolon, covariant differentiation.) We then choose 
the first tetrad vector l~ to be orthogonal to these hyper
surfaces, so that 

l~ = u.~. (2.5) 

Since these are null hypersurfaces, the vector l~ will 
also be tangent to a family of null geodesics in the hyper
surface and, therefore, 

(2.6) 

It is r.onvenient to choose for coordinates Xo = u and 
xl = r, where r is an affine parameter along the geo
desics with tangent vector IP. Thus, l~ = 0°, l~ = 
dxp/dr =g~Vu,v=g~O = OJ, and l~;vlv = O~sincer is 
affine. 

The two remaining coordinates x 2 and x 3 will label 
directions in the null surface, i.e., they will label the 
geodesics on each hyper surface u = const. 

In order to satisfy Eqs. (2. 1) with the above conditions, 
the tetrad system must have the form 

(2.7a) 

(2.7b) 

(2.7c) 

where w, ~A, U, andXA are arbitrary functions of the 
coordinates. 

The completeness relation (2.2) then enables us to write 
the metric as 

° 1 ° 1 gll g12 
g= ° g21 

° 12
31 

where 

gll = 2(U - ww), 

glA =XA- (~AW + TAw), 

gAB = _ (~ATB + TA~B). 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

Along with the above conditions on l~ we impose the 
further condition that n~ and m ~ be parallely propagated 
along the null geodeSics. 

From the tetrad one defines the Ricci rotation coeffi
cients 

ymnp = Zm. Zn~Zpv 
p.v 

and then the spin coefficients 

K = Y131 = lf1,vmlllv, II = - Y242 = - np :vmllnV , 

(2.9) 

p = Y134 = lil:vm~mv, IJ. = - Y243 = - n~,vm~11lv, 

a =Y133 = lll;vI1l~mv, A =-Y244 =- n~;vm~11lv, 

T = Y132 = lil;vm~nv, 7T = - Y241 = - nll;vI1lillV, 

O! = t(Y124 -Y344) = t(Z~;vnilmV -mll;vmilmV), 

B = i(Y123 - Y343) = t(Z~ ;vn~m v - in il ;vm ~In v), 

'( = ~(Y122 - Y342) = i(Z~ ;vn~nv - m ~ :vmllnV ), 

E = i(Y121 - Y341) = t(Zll;v lv - mil ;Jii~IV). 

(2.10) 

where K = 7T = E = 0, P = p and T = O! + f3 due to the con
ditions on l~ and the parallel propagation of the tetrad. 

Tetrad components of a tensor are defined by 

(2.11) 

In particular, when applied to the Weyl tensor we have 

t/l o = - Cllvpal~mvlpma, 

1/1 1 =-C~vi10l~nvlpma, 

1/1 2 = - Cp vpom~nv lp11la, 

1/1 3 = - C~vpam~nvlpna, 

t/l 4 = - C~v~am~nvmpna. 

Intrinsic or directional derivatives have the form 

Dcp= cp.;~l~, b.cp = <f;~np, 
ocp = cp;~m~, Bcp = <f;~m~, 

where 

a 
D = (Jr' 

a 0 a b. =- + U- +XA_· 
OU or ox A ' 

0= w..i!.. + ~A_a_ 
ar ax A' 

(2.12) 

(2.13) 

(2.14) 

The spin coefficient formalism (NP) consists of three 
sets of first order differential equations for the three 
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sets of variables, the Weyl tensor components, the spin 
coefficients, and the tetrad components (also referred 
to as the metric variable), which are equivalent to the 
Einstein field equations. 

Before summarizing the asymptotically flat solutions 
of these equations, we review14 some properties of the 
differential operator edth tl and the idea of spin weighted 
functions. This will enable us to express the solution in 
a more compact form. 

Consider an arbitrary two-dimensional surface with the 
metric in conformally flat form, Le., 

1 d~dr 
ds 2 == _[(dX2)2 + (dX 3)2 J ==--

p2 p2' (2.15) 

(The coordinates x2 and x 3 will eventually represent the 
coordinates introduced earlier to label a null geodesic. 
The peculiar form for the complex coordinate ~ has 
been chosen purely to make the conventions used here 
conform to those used in other papers.) Let 

(2.16) 

where aA and b A are orthonormal tangent vectors to the 
surface. Under a rotation in the tangent plane we have 

(2.17) 

Any function 1) defined on the 2-surface which transforms 
under (2.17) as 

(2.18) 

is said to have spin weight s. 

The operators 0 and 5 are then defined as 

ti1) == 2pl-s a(p"r/) 
a ~ , (2. 19a) 

5TJ = 2pl + s a(~~s1)), (2. 19b) 

where 1) is any spin weight s function. tl( is) has the im
portant property that it raises (lowers) the spin weight 
by unity. Their commutation relation is 

(2.20) 

For any suitably regular function 1) of integral spin weight 
s > 0 (s < 0), there exists a function W of spin wieght 
zero such that 

1) == ti sW (1) == 15- sW). (2.21) 

This fact can be used to define the" electric" and" mag
netic" parts of 1),1) e' and 1) m: 

s > 0: s < 0: 

1)e == tis(ReW), 1)e == lS-s(ReW), 

1)m == iti s(ImW), 1)m == i15- s(ImW), 

where 1)e + 1)m == 1). 

(2.22) 

(2.23) 

If P == Po = t(1 + ~~), i.e., the 2-surface is the unit 
sphere, then the corresponding operator tlo and the sphe
rical harmonics can be used to define the spin s spheri
cal harmonics sYzm' (See Ref. 14 for the definition.) 
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Any suitably regular function on the sphere 1) with spin 
weight s can be expanded in the form 

The s Y1 m are also eigenfunctions of 150 tio, 

15otio sYlm == [- l(l + 1) + s(s + 1)].Y1m • 

Finally, it can be shown that 

(2.24) 

(2.25) 

(2.26) 

~e., (50 annihilates a function with spin weight s == l, and 
(50 annihilates a function with spin weight s == - 1. 

With the aid of ti, defined above, and the complex coordi
nate ~ == - x 2 + ix 3 we are able to present the following 
summary of the asymptotically flat solutions of the spin 
coefficient equations: 

components of the Weyl tensor: 

l/I o = l/I8r-5 + O(r-6 ), 

l/I1 = l/I~r-4 + 15l/18r-5 + O(r-6), 

l/I2 = l/Igr-3 + lSl/I£r-4 + O(r-5 ), 

l/I 3 = l/I~y-2 + lSl/Igr-3 + O(r-4), 

~/4 = l/I~r-l + lSl/Igr-2 + O(r-3); 

spin coefficients: 

p == - r- 1 - oOaOr-3 + O(r-5), 

(2. 27a) 

(2.27b) 

(2.27c) 

(2. 27d) 

(2.27e) 

(2.28a) 

(2. 28b) 

f3 == - a°y-l - oOQl Or-2 - (0000(;0 + !l/I£)r-3 + O(r-4), 

(2. 28d) 

T == - tl/l~y-3 + ~ (oOH - 25l/18)r-4 + O(r-5), (2.28e) 

i\. == AOr-1 -a0/.Pr-2 + (oOo0i\.0 + toOl/l~)y-3 + O(r-4 ), 

(2. 28f) 

/.L == /.L°r- 1 - (o°i\. ° + l/I~)r-2 + (0°O:°/.L° - tlSl/I?)r-3 

+ O(y-4), (2. 28g) 

I' == y0 - !l/I~r-2 + (~l/I~QlO - ~ij;~&0 - i lSH)r-3 + O(r-4), 

(2. 28h) 

v == VO -l/I~y-l - ilSl/I~ + O(r-3); 

the metric variables: 

U == (P!P)r - (5t) InP - t(lft~ + ~~)r-l 

(2.28i) 

- ~(15lft2 + tiij;~)r-2 + O(r-3), (2.29a) 

XA = ~ (l/I~10A + ij;~~OA)r-3 + O(r-4), (2. 29b) 

e == ~OAy-l -o010 Ay-2 + oOo-O~OAr-3 + O(r-4), (2.29c) 

where ~OA == (P, iP), 

w == w0y-l - (OOwO + tlft~)r-2 + O(r-3), (2. 29d) 

(A dot denotes differentiation with respect to u.) 
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Further relations between the coefficients of the dif
ferent powers of rare 

1'0 = - '2 (p!p) , 

(lI0 = - aP/a~ = - '215 InP, 

vO = 15P!p, 

,\0 =00 - aOp/p, 

IP = UO = - (515 lnP, 

(lj/~ _ ~~) = ~200 + OO~O - (520-U - 00,\°, 

lj/g = 155~ InP + 5'\°, 

lj/~ = - fJ2(P!P) - ~o + 2(P!P),\0. 

Finally, we have the dynamical relations 

~8 - 3(P!P)lj/8 = - t5ljI~ + 300lj/~, 

~~ - 3(P!P)lj/~ = - t5ljI~ + 200lj/g, 

. ° . ° ° ° lj/2 - 3(P/P)lj/2 = - 51j;3 + 00lj/4' 

(2.30a) 

(2.30b) 

(2.30c) 

(2.30d) 

(2.30e) 

(2.30f) 

(2.30g) 

(2.30h) 

(2.30i) 

(2.30j) 

(2.30k) 

(2.301) 

If the metric tensor is constructed from the tetrad com
ponents' uSing Eqs. (2. 8), the 2-surface, u and r constant, 
in the limit as r -7 DO, has a metric of the form 

2 lim (r-2ds2) = d~d~ . 
r~OO p2 

We assume that P can be written as 

where V is to be a regular function, with no zeros, on the 
sphere, i.e., expandable in spherical harmonics. V - 1 
can be interpreted as the deviation of this limiting 2-
surface from sphericity. 

A second interpretation, which we mention without proof, 
is the connection of V with the rate of change (at infinity) 
of our null coordinate system with respect to a Bondi 
type null coordinate U B' namely 

Closely associated with this interpretation is the fact 
that using the present type of coordinate system in flat 
space yields 15 

1 

V = v == ~ vlmYlm(~' ~), 
1"-0 

where the four Vim are in one-to-one correspondence 
with the velocity vector of the world line defined by the 
apex of the null cones, U = const. Later we shall show 
that even though the u = cont null surfaces in asymptoti
cally flat spaces are not exact cones and do not possess 
an apex, it will still be possible to interpret them as if 
they did and to extract by Lorentz invariant operations 
on Va 4-velocity VM. Under appropriate circumstances 
ViI will be interpreted as the velocity of the center of the 
source. 

Returning to the main diSCUSSion, if we use the operators 
50 and 50 defined by 

5 y/ = 2P 1-8 il(P0 8y/) 

° ° a~' 
(2.32a) 

(2.32b) 

where y/ is any spin weight s function, and introduce the 
s = -2 function 

R =~ +.1 ~2V 
V2 V ° , (2.33) 

we find that several of the equations in the set (2.30) 
may be greatly Simplified. For instance, (2. 30i) and 
(2. 30h) become 

(2.34) 

and 

lj/~ = (5( V2R) = V3(5aR. (2.35) 

Furthermore, if we define the s = 0 function 

- ° -2 ° o~o 0-0' / -3 P = - [lj/2 - 5 0 + a a - a a (V V)]V , (2.36) 

then after considerable manipulation (2. 30l) and (2. 30g) 
become 

(2.37) 

and 

p - p = O. (2.38) 

We note for future use that the first three terms on the 
right-hand side of (2.37) cannot possess any 1 = 0 and 
1 = 1 spherical harmonic terms. This follows from the 
annihilation properties of 56' 
Finally, by introducing the s = - 1 function 

65 = - [~~ -- '2~(0000) - 00taO]V-3, 

the complex conjugate of (2. 30k) becomes 

6§ = - V-3~(pV3) + oOooV-315(ir/v) 
-V-3[2005~5 lnP + %001560 + '260tloO 

- ~(52aO - %~OtaO - '2a0t~O]. 

(2.39) 

(2.40) 

In order to keep the motivation clear, in the midst of this 
over-abundance of definitions, we antiCipate results of 
the next several sections by pointing out that p and 5 
will playa basic role. More precisely, we will argue that 
the four coefficients of the 1 = 0 and 1 = 1 spherical h,tr
monics in the expansion of p become the 4-momentum 
of the source [note the importance of the reality of p, 
(2.38)] and that the three complex (six real) coefficients 
of the 1 = 1 spherical harmonics in the expansion of 5 
become the angular momentum-center of mass tensor. 
It should, therefore, already be clear that Eqs. (2.37) 
and (2.40) implicitly contain the equations of motion. 
The analysis involved in obtaining them explicitly will 
be quite complicated. 

As a last result of this section we write out the asympto
tic form of the finite coordinate transformation (connect
ed with the identity) which preserves all the relations de
veloped up to this point [see (NU)]: 
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u' = G(u,~,~) + 0(r- 1 ), 

r' = C-Ir + 0(1), 

~' = (a~ + b)/ (c~ +d) + O(r- l ), 

(2.41) 

where in principle !he order symbols are determined 
in terms of G (u, ~, 0 and the constants a, b, c, and d. 
Notice the natural appearance of the homogeneous 
Lorentz group through the fractional linear transforma
tion. 

Although it is possible by the proper choice of G to make 
V = 1 and thereby arrive at Bondi coordinates, we will 
avoid doing this. Instead we leave the coordinate free
dom open for the time being. In the final section we will 
argue for a different chOice, dictated by a center of mass 
condition. 

3. THE ASYMPTOTIC SYMMETRY GROUP 

In this work we consider that the asymptotic coordinate 
group (discussed in the previous section) and the asymp
totic symmetry group (BMS) are to be regarded as two 
distinct entities. This may be thought of as being analo
gous, for example, to the distinction made in three
dimensional EUClidean space between the transformations 
between arbitrary coordinate systems and the symmetry 
transformations generated by solutions to the Killing 
equation. In fact, the asymptotic symmetry group will 
not be thought of as a group of transformations at all, 
but rather as a set of descriptors (generators) from 
which we shall be able to define energy-momentum, 
angular momentum, etc. (We neglect the difficulties, 
which are not insurmountable, associated with the fact 
that the homogeneous Lorentz group is not an invariant 
subgroup of BMS.) 

The infinitesimal BMS group is obtained from the asymp
totic Killing equation 

(3.1) 

(3.2) 

where n differs with the choice of components. (See 
Refs. 5 and 9.) Solutions to (3.1) may be found either by 
transforming the solutions, already known5 •9 in a Bondi 
coordinate system, to our coordinate system, or by 
direct integration. (See Appendix A.) 
The results may be summarized by writing 

~~ = Al~ + Bn!' + Cm~ + Cm~, 

where 
A = AIr + Ao + A_Ir-1 + 0(r-2), 

B =Bo, 

C = C1r + Co + C_1r- 1 + 0(r- 2 ), 

and 
Al = - (1/ V)(BoV)', 

Ao = C55Bo + B oC55 lnP, 

A_I = HBo(tJi~ + 1lI~) + CltJi~ + clllln 
C I = c(~, ~)/V, with C50 c = 0, 

Co = C5B o + C\UO, C_1 = 0, 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Bo = b(~, ~)/V - (l/2V)Ia" V3[C5o(cV-2) + tlo(cV-2)]du. 

(3.9) 
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Note that the only freedom in the solution is in b(~, ~), 
an arbitrary function on the sphere, which is the super 
translation freedom, and solutions to C50 c = 0, which 
correspond to the homogeneous Lorentz transformation 
freedom. (See Ref. 16 for details). In fact, if we return 
to a Bondi system, Le., V = 1, then (3.3) becomes the 
conventional form of the infinitesimal BMS transforma
tion. In particular (3.9) becomes 

Bo = b\~, ~) + ku, (3.10) 

where k(~,~) = -1(C5oC + 5oC) is the infinitesimal con
formal conformal factor,16 

In the next section the asymptotic Killing vectors, 
Eqs. (3.3)-(3.9), are used in the Winicour-Tamburino 
linkage expressions to obtain definitions of the energy
momentum 4-vector and the angular momentum-center 
of mass tensor. 

4. THE WINICOUR-TAMBURINO LINKAGES 

In this section we shall use the linkages defined in Ref. 10 
to obtain definitions for the energy-momentum and 
angular momentum. When making use of the equations 
from this work, some caution must be exercised. Tam
burino and Winicour use a metric with signature + 2, 
whereas the present metric has signature - 2. Also, only 
one of the two real null vectors k~ and m~ used in 
Winicour-Tamburino can be carried over directly into 
the present notation. Their k~ can be equated to our 
l~. However, the m~ of Winicour-Tamburino cannot be 
equated to n~ for the following reason. In order to form 
the linkage integral correctly, the two complex null vec
tors must have no components in the x O, x I directions. 
At the same time the tetrad must satisfy the pseudo
orthonormality conditions (2. 1). In the present notation, 
the complex null vectors m~ and m~, given by Eq. (2. 7c) 
do contain components in the x 1 direction. Therefore, 
to make use of the linkage expressions we must find one 
real.Jlnd two complex null vectors, denoted by n~', m ~' 
and m~', such that m ~, and m~' have no x I component, 
and l~, n~', m ~, and m ~, satisfy the pseudo-orthonormali
ty conditions (2.1). 

Since the set of vectors l~, n~', m ~', and m ~, must satis
fy Eqs. (2. 1), it is clear that they must be related to the 
tetrad l~, nl', m 1', and m ~ by a null rotation about l~ 
given by 

11" = /1', 

n~' = nl' + Hml' + Hm~ + HH1~, 

m~' = m~ + H1~. 

(4.1a) 

(4.1b) 

(4.1c) 

Thus, ml" = WOII' + ~OA~ + HOl~ and by the choice 
H = - W we can eliminate the component in the xl direc
tion contained in m 1" and m 1". This implies the follow
ing: 

n~' = n~ - wm~ - wm~ + wwl~. (4.2) 

After correcting for the difference in the signatures of 
the metrics, it is possible to write the linkage integral 
in the present notation as 

L (9") = lim j'(~ll';Vl + ~P ll~n'vl)l n'dS (4.3) , ;p ~ v , 
r~OO 

where L(9+)is the linkage evaluated at future null infinity 
(9+). 
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By making use of the radial dependence of the spin co
efficients, Eqs. (2. 28), and the radial dependence of the 
tetrad components of the descriptors of the asymptotic 
symmetry group (previous section), Eq. (4. 3) becomes, 
after a very tedious calculation, 

L, (g+) = tj {b[tJ!~ + 1J~ + UOA O + (jo~o - 520'0 - 52uolV-3 

+ c[21J? - 2(j0t)uo - t)(u°(jO)lV-3 

+ cr2tJ!~ - 2u05(jo - 5 (aO(jO)]V-3}drl, (4.4) 

where drl = d~dVP02. 

When the angular dependence of b is restricted to each 
of the four 1 = ° and 1 spherical harmonics, the four 
parameter translation subgroup of the BMS group will 
have been singled out. If, in addition, no homogeneous 
Lorentz transformation is allowed, i.e., c = c = k = 0, 
then (4.4) yields, by definition, the four components of the 
energy-linear momentum vector. 

If, on the other hand, b = ° and c "'" 0, then, since c is a 
spin weight one quantity and satisfies 5oc = 0, it has the 
form c = amI YI m' with am being three complex constants. 
The three complex (6 real) values of (4.4) are, once 
more by definition, the angular momentum-center of 
mass tensor. 

We point out that the coefficients of band c are, respec
tively, proportional to what we earlier called p and S. 

Equation (4.4) is used only to justify the identification, 
up to a fastor, of the 1 = 0, 1 parts of F and the 1 = 1 
parts of 5 with the 4 -momentum and angular momentum
center of mass tensor, respectively. In the next section, 
using techniques from the theory of infinite-dimensional 
representations of the Lorentz group, we shall extract 
from p and S in a Lorentz covariant fashion explicit 
expressions for PI' and 51' v and their dynamical laws. 

5. EQUATIONS OF MOTION 

Let us first review what has been accomplished thus 
far. Asymptotic symmetry considerations have led us_ 
to two functions, defined at future null infinity, F(u,~, ~) 
and 5(u, ~, ~), and to the identification of certain of their 
components with the physical quantities PI' and 51'v. By 
examining asymptotically flat solutions to the field 
equations, we have learned that p is real (2.38) and that 
the Bianchi Identities yield the time evolution of p (2. 37) 
and 5 (2. 40). We have also introduced the function 
V(u, ~, ~) and suggested that a part of it is related to still 
another physical quantity, namely, the 4-velocity vI'. 
Furthermore, we have pointed out that, in asymptotically 
flat spaces, the homogeneous Lorentz group is well de
fined at future null infinity in terms of the fractional 
linear transformation 

~' = a~ + b 
c~ + d' 

(5.1) 

to which it is isomorphic. In this section we shall first 
explicitly define the physical quantities mentioned above 
and then obtain the equations of motion, both in a Lorentz 
covariant way. 

In the preceding paper I 1 (to which the reader may wish 
to refer at this time) we discuss spin and conformally 
weighted functions on the sphere, that is, functions which 
transform under (5.1) with spin weight s and conformal 
weight w, as defined by (2. 7)'. (In this section reference 

to equations from the preceding paper will be indicated 
by a prime.) Such functions form a vector space, de
noted by D( s. w)' upon which infinite dimensional repre
sentations of the Lorentz group act. Of particular in
terest to us are spin and conformally weighted functions 
that form the vector spaces D( s. w) and D( s" -so w" -w-2) 
== D(-s.-w--2) such that 

sand 1V are either integer or half-integer 

and w ? 1 s I. 
(5.2) 

Neither of these spaces is irreducible. D (s. w)' for instance, 
contains afinite- dimensional invariant subspace 
E(s.w) C D(s.w)' Furthermore, there exists a mapping, 
II(s.w): D(-s.-w-2) -7 E(s.wJ' defined by (2.10)' and (2.11)', 
which commutes with the Lorentz transformations. This 
means that,given any function ii(-s.-w-2J E D(-s.-w-Z)' 
such that sand w satisfy (5.2), II(s.w) can be used to 
define another function 

(5.3) 

in a Lorentz covariant way. As is shown in Sec. 3 of the 
preceding paper, the functions that form E(s.w) can be 
directly related to Minkowski tensors. 

We shall now apply this procedure to our case. First, 
we point out that it can be shown that under (5.1) 

V(u,~,~) E D(O.I)-7 V-3 E D(0._3)' 

P(u, ~,~) E D(0._3)' 

s(u,~, ~)E D(-I.-3)' 

(5.4a) 

(5.4b) 

(5.4c) 

Based on the results of the preceding paper this means 
that we can define 4-vectors from V-3 and F alld a trace
free, anti symmetric second rank tensor from S as follows; 

vl'l~ = v = II(0.I)V-3 

= Yoo (rI)jYoo(W)V(rI,)-3drl' 
I 

-! L: Y (rI)jY (W)V(rI') -3drl' 
3 m=-I I m I m , 

pl'l~ =p = II(o.li, 

where V has been normalized such that 

I1(0.0) V-3 v = jV-3 vdn = ~ v'"vC( = 1. 

It is useful to define an additional function 

T = uOiJOv-5 E D(0.-5) 

from which we can define the following trace-free, 
symmetric third-rank tensor 

Tl'vPl~l~l~ = II(0.3)T= YOO(rI)jYOo (r2')T(rI')drl' 

I 

- t 6 y1m(mjY1m(rI')T(rI')dW 
m=-I 

1 

+ t L) y2m(mjY2m(rI')T(rI')dfl' 
m=-2 

3 

- ~ L) Y3m(mjY3m(rI')T(rI')drl'. 
m=-3 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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[The vectors l~ and m~ that appear in this section are 
given by (3.1) and (3. 2b)', respectively.] 

Equations (2.37) and (2.40) can be rewritten as 

p ==- ti85BV + ti8(RV) + 5a(R~) 
- Tvv + 4TiJ 2 + P, (5.9) 

65 == - v··25 0{pv3) + Tv35 0(v/v) + W, (5.10) 

where 

- '':'0 J r - (crO)'(OO)' ] F =-[aOa v-3 - LRRV - v v v·1 (5.11) 

and 

W = r~ ~otjao + toOt5~O - ~oot) 50 - ~05(j0JV-3 
- [2V-3a°ti5ti InPo V - V·3"8"ti 2 crO + V-3ti (pV3) 

- oOaO V·3ti (V/V) - v·2ti O(pv3) + aOaOv'2~0(v/v)]. 
(5.12) 

Each term in (5.9) has spin weight s == 0 and conformal 
weight w := - 3, so that Il( 0,1) can be applied to it direct-
1y to obtam 

Pll = FIl + ~ Tv aVavr - trvl' + -!iW:X8 vaV8 + 2tlla8 iJ aVS' 

(5.13) 

Similarly, (5.10) consists entirely of s = - 1,w = - 3 
terms and application of Il( 1,1) yieldS 

SIlV + v!.upvJ == JIlV - -* TV[llv v! - It[l'vv) + .!trx[llvvJv 
, 2 3 a' 

(5.14) 

where extensive use has been made of the relations 
(4.14)' from the preceding paper and where 

Fl'l~ = Il(O,lf, 

Jllvl~m~ = IlO,l)l, 

(5.15a) 

(5. 15b) 

(5. 16a) 

(5. 16b) 

(5.16c) 

(5. 17a) 

(5. 17b) 

(5. 17c) 

In Eqs. ~5. 9) and (5.10) all of the explicit dependence on 
v and v is exhibited in the terms involving the function 
1". The expressions F and J depend only on 0'0 and the 
higher (l ;;: 2) harmonics in V. (The second of the brac
keted terms in both (5. 11) and (5.12) vanishes if V = v.) 
Therefore, FI' and JJlv are independent of velocity and 
acceleration and are, respectively, the radiation reaction 
force and torque due to the mass (sometimes called 
"electric type") moments and the spin ("magnetic type") 
moments. 

By contracting (5.13) with vJl and defining the inertial 
mass by 

m := !p"'v a, (5.18) 
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we obtain 

Pi' = mvll + Sl"'y~, -Jlla/J - k TiJIl + -41taV vJl - -sl/ll'" V ex a.3 0' a· 

(5.19) 

Elimination of pll between (5. 19) and (5.14) yields 

(5.20) 

Finally, substituting (5. 19) into (5.13) yields 

+ tT(i)1l + tVCiv",vll) + ttJ.liJ",v a 

- .!tati Vil + ~4(if.lCiB .!iailYv VP)V VB 
2 Ci 2 Y Ci 

+ l·(t JlCiB - .!tCiflyv vll)(V V + 9V iJ ) 
4 2 Y Ci il '" B (5.21) 

(5.22) 

It should be noted that although the fifth term in (5.21) 
is similar to the radiation reaction term in the Lorentz
Dirac !orce law with ~e2 replaced by tT(T"" Il(o.o/v3 

= J croav·2dO ~ 0), the radiation reaction force is vastly 
more complicated in the gravitational case. 

Although (5.22) yields the time development of the 
inertial mass, it is pO which is the Bondi mass, and the 
Bondi mass law is easily obtained from (5.13) in the 
following way. From (2.37) we see that 

Pl'l~ = - Il(O.l) RRV. 

Taking the 1 = 0 part of (5.23) we obtain 

pOlo ::= (l//2)pO ~ - JRRVdO ~ O. 

(5.23) 

(5.24) 

We have used units in which the gravitational constant 
is one. When conventional units are used and the limit 
of zero gravitational constant is taken, (5. 13) and (5. 14) 
reduce to 

Pf.l = 0, 

SIlY + V[fip!ll :;;:; 0, 

(5.25) 

(5.26) 

the usual Lorentz invariant equations of motion for a 
free particle with intrinsic angular momentum,15 

6. DISCUSSION 

In addition to the question of the reasonableness of the 
definitions of the physical quantities (in particular, the 
angular momentum and center of mass), there remains 
the difficult and important question of which family of 
2- surface at infinity should be used in the evaluation of 
these quantities. (Due to the manner in which we have 
set up the problem, this question is equivalent to asking 
which null coordinate system should be used.) 

To investigate this question let us first study an analo
gous situation in electrodynamics in Minkowski space. 
ConSider a finite charge distribution and a null coordinate 
system based on an arbitrary timelike world line.16 

Relative to this coordinate system, one can describe 
(actually define) the multipole moments of the source 
distribution by looking at the angular behavior of the 
asymptotic field. (We emphasize that the moments de
fined in this manner do not agree with the usual defini
tion of the moments, e.g., Qlm ex jY1mr 1pd3 x, where the 
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source properties are taken at a fixed time. In our 
case the integral is essentially taken on the light cone.) 

It is clear that if a second world line is chosen as the base 
. line for a different null coordinate system, then the 
associated moments will, in general, bear little relation 
to the first set of moments. (The transformation proper
ties involve the history of the source.) It appears most 
likely (but to our knowledge not explicitly proven for 
these "null" type of moments) that a time like world can 
be chosen such that the associated electric dipole moment 
is zero. Such a line could be called the center of charge 
line. 

The natural question arises: C an the same idea be applied 
to the center of mass in either the linear of full theory 
of gravitation? In other words, can we find a coordinate 
system such that the associated center of mass is zero? 
In the linearized version the difficulties are exactly 
the same as in the electrodynamic case, while in the full 
theory the difficulties are vastly increased. 

In the first place the null surfaces which we have been 
using do not, in general, have conelike behavior Le., they 
do not possess an apex) and thus a family of them does 
not define a world line in the interior. However, in a 
recent paperl2 it was shown that there exist" canonical" 
families of null surfaces (surfaces of, in some sense, 
minimal asymptotic shear) which have many of the pro
perties one associates with the families of null surfaces 
constructed from a world line in Minkowski space. In 
particular, the transformation freedom between two 
different" canonical" families is the same in both cases 
and depends essentially on three functions of u. This 
is (numerically) the correct amount of freedom to be 
able to set the center of mass (or charge) equal to zero. 
This observation, of course, does not constitute an exis
tence proof. It, however, lends plausability to the conjec
ture that by an appropriate coordinate condition one can 
obtain supplementary conditions (to the equations of 
motion) of the form 

'This research was supported in part by the National Science Foundation 
under Grants GP-19378 and GP-22789. 

Ip. G. Bergmann, Introduction to the Theory of Relativity (Prentice-Hall, 
Englewood Cliffs, N. J., 1942). 

(6.1) 

'H. Bondi, M. van der Burg, and A. Metzner, Proc. R. Soc. A 269, 21 (1962). 
JR. Sachs, Proc. R. Soc. A 270, 103 (1962). 
'E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566 (1962). 
sE. T. Newman and T. Unti, J. Math. Phys. (N.Y.) 3,891 (1962). 
6R. Sachs, Phys. Rev. 128, 2851 (1962). 
'R. Penrose, Phys. Rev. Lett. 10,66 (1963). 
'R. Penrose, article in Relativity, groups and topology, edited by C. Dewitt and 

B. Dewitt (Gordon and Breach, New York, 1964). 
'R. Sachs, article in Relativity, groups and topology, edited by C. Dewitt and 

B. Dewitt (Gordon and Breach, New York, 1964.) 

or possibly 

Sw:xPa = O. (6.2) 

[From some preliminary calculations, (6.1) appears 
more likely than (6.2).] 

APPENDIX A 

Equations (3.1) and (3.2) are most easily solved by 
first rewriting them in spin- coefficient notation (Sec. 2). 
This is accomplished by substituting 

~~ = AI!' + BI!' + Cm ~ + Cm~ 

and taking tetrad components of (3. 1) and (3.2). The 
resulting equations are 

(AI) 

DB = 0, (A2) 

DA + t:,.B = (I' + y)B + TC + =FC, (A3) 

I5B-DC=TB+aC+pC, (A4) 

M. = - (I' + y)A - BC - vC + 0(1), 

I5A - t:,.C = - 2TA + vB - Xc - (11 + Y - y)C + 0(1), 

I5C = aA- XB +({3 - a)C + O(r-l), 

(A5) 

(A6) 

(A7) 

OC + BC = 2pA - (11 + fi)B + (a - {3)C + (a- fi)C 

+ O(r- 2). (AS) 

The powers of r- l in the order symbols are chosen by 
realizing (not obviously) that if higher powers are 
chosen, the equations will in general have no solutions. 
(Other justifications are given in Refs. 5 and 6.) 

Using the known spin-coefficients (Sec. 110), \A2), (A3), 
and (A4) can be integrated immediately for the r depen
dence of A, B, and C. The remaining equations then 
yield relations between the coefficients. These results 
are summarized in Eqs. (3. 3)-(3. 9). 

10L. Tamburino and J. Winicour, Phys. Rev. 150, 1039 (1966). 
II R. Lind, 1. Messmer, and E. T. Newman 1. Math. Phys. (N.Y.) 15, 1879 (1972). 
12B. Aronson, R. Lind, J. Messmer, and E. T. Newman, J. Math. Phys. (N.Y.) 
12,2462 (1971). 

IJLower lase Latin indices are used for tetrad components and range over 
1,2,3,4. Greek letters ranging over 0,1,2,3 and capital Latin letters ranging 
over 2,3 are used for tensor indices. 

14For properties of the edth operator if, see E. T. Newman and R. Penrose, 1. 
Math. Phys. (N.Y.) 7, 863 (1966), and J. N. Goldberg et 01., J. Math. Phys. 
(N.Y.) 8, 2155 (1967). 

15J. Frenkel, Z. Phys. 37, 243 (1926); M. Mathisson, Acta Phys. 6, 163 (1937); 
Acta Phys. 6, 218 (1937). 

16A. Held, E. T. Newman, and R. Posadas, 1. Math. Phys. (N.Y.) 11, 3145 
(1970). 
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Normalized tensor operators for a finite group S are defined by means of coefficients U which formalize the descent in 
symmetry from ell, to S. The properties of these coeffiCients are demonstrated and tables given. Some examples of applica
tion show their use and utility. 

Whereas in spherical symmetry irreducible tensor op
erators are defined by means of their commutation re
lations with angular momentum operators, for finite 
symmetry groups they are characterized by their trans
formation properties, Le., by the irreducible represen
tation and component to which they belong. Both defini
tions are of course equivalent; but they are not always 
handled in the same form. This introduces a disconti
nuity between the formalisms of atomic spectroscopy 
and crystal field theory. It is the purpose of the present 
paper to bridge this gap, by means of the formalization of 
the descent in symmetry from ffi 3 , to its finite subgroups, 
especially the cubic groups. 

To show how this can be done, consider a basis, 11m) of 
the rep:Ilz of ffi 3 . Upon descent in symmetry to the finite 
groups g, :Ilz breaks up in reps of 9 , and if we choose 
bases 11 ry) for 9 , we have 

Ilm)=~(lryllrn)llry). (1) 
fy 

Here the symbol for the basis Il ry) contains 1 to indi
cate that r is contained in the decomposition of :Ill' We 
can apply the development indicated in Eq. (1) to express 
an irreducible tensor operator {kq} = C(k), which obeys 
the usual commutation relations with th~ angular momen
tum operators 1.,Z±: 

[{kq}, lz J = q{kq}, 

[{kq},l±] = [k(k + I) - q(q ± 1)]1/2{kq ± I}. (2) 

Upon descent in symmetry from ffi3 to 9 , we may write 
the equivalent to Eq. (1) for operators 

{kq} = ~ (kryl kq){kry}. (3) 
fy 

Equation (3) involves the same transformation coeffici
ents as Eq. (1), and it may serve as a definition of the 
irreducible tensor operator component {kry}. We have 

(4) 
q 

We shall call the {kry} a component of a S -tensor of rank 
kr. The application of the Wigner-Eckhart theorem to 
the matrix elements of irreducible spherical or S -ten
sors defines in each case a reduced matrix element 

(1m I {kq} 11'm ') = (- l)l-m (-~~~) (111 {k} lIZ') 

= (_I)l-mv (-l,,!;:q) (l II{k} Ill'), (5) 

r'r"r 
(Z'r'y'l{kry}ll"r"y") = V( , " )(I'r'!I{kr}111'T") 

y 'Y 'Y 
(6) 

(when real components are chosen for the repsr). 

The properties of the vector co~ling coefficients V are 
well known1 .2 ; we use here the V coefficient rather than 

the 3j coefficient even for ffi3 symmetry, to emphasize 
the Similarity of the expressions. 

Now, as the S -tensor {kr} is defined in terms of the 
spherical tensor components, we may develop the re
duced matrix element in Eq. (6) and write according to 
a theorem of Racah3 

lr'r"r) (I 'r' II {kr} Ill" r") = u \ (1 'II {k} III "). 
1'1 "k \ 

(7) 

This defines the coefficient U which formalizes the sym
metry reduction from ffi3 to g. The reduced matrix ele
ment on the right-hand side of Eq. (7) is exactly the 
same as that in Eq. (5), and in it no reference to g is 
made. 

The U coefficient is a sum of products of five factors, 
two coupling coefficients and three transformation co
efficients, viz. 

It is clear from its definition that the U coefficient has 
the following properties: 

(a) It is invariant, as is easily proved by a coordinate 
transformation. 
(b) It is zero unless (lIZ 2Z3) and (r 1 r 2r 3) separately 
satisfy a triangular condition, which for g means r 1 x 
r 2 =:J r 3' and for ffi3111 - I 21 s 1 3 ,,:: 11 + I 2' 

(c) It is invariant to even permutation of its columns; 
both elements of a column belong together: Under odd 
permutations, a factor (- I)L+r is introduced, where L = 
11 + I 2 + I 3' r = r 1 + r 2 + r 3' and (- 1) r are defined 
by Griffiths.1 
(d) It is zero unless each r is contained in the branch
ing of the corresponding Z . 

In the Appendix we give a short table of values of U for 
the cubic groups. 

As a simple example of application of Eq. (7) and the U 
coefficient, we may generalize the theorem, due to 
Abragam and Pryce4 of the proportionality of the ma
trix elements of the angular momentum operator L 
within the T 2g components of a d-state with those with
in a p-state. In fact we have, since in g = (:) h' L trans
forms as T 19 and is proportional to {IT lJ: 

(
T T T ) x (2 II {I} 112) V 2g ,2g Ig , 

Y2g'Y 2g 'YI g 
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(1 T lu Ylu I {I T 19Y1g} 11 T lu Ylu) 

= U1TluTluTlg(111{1} 111) V(TIU~lUTlg), 
1 1 1 Y2gYagYlg 

furthermore Griffithsl shows that VUll~~~31) = v(~~~~;J 
Thus the proportionality constant Ci between the ma
trices is given explicitly by 

uJTagT2gTlg/ (211{1} 112) 
I 2 2 1 \ 

Ci = U JTluTluTlg( UII{1}111) , 
) 1 1 1 \ 

a result which is immediately generalizable to any set 
of states {l T},for any land T being any triply degener
ate rep of one of the cubic groups. 

DESCENT IN SYMMETRY FOR IRREDUCIBLE 
PRODUCTS 

An irreducible product of 9 tensors is a 9 tensor. We 
may define it by the equation 

{klr1 ;,?) kara --7kry} 

= ~ [r]1/av(rlr2r){klrlYl}{k2r2YJ, (9) 
YIY2 YlY2Y 

which is analogous to the spherical case, where we have 

{k 1 XI k 2 -7 kq} 

_(klk2 k) 
= B [k]1I2(-l)k- q V {k 1ql}{k 2qa}' (10) 

q)q2 qlq2- q 

In each case [k] = 2k + 1 is the dimension of :D k in (R3 

and rr] is the dimension of r in g. 

If we reduce the irreducible product of Eq. (10) into a 
direct sum of g-tensors using Eq. (3) and compare the 
result with Eq. (9), we find the following expression for 
the irreducible product of S -tensors: 

{k 1 r 1 ·<0k 2r 2 ->kry} 

= )1I!1(1/2U(klk2k){kl (i) k2 -~kry}. (11) 
[rJ\ r 1r 2r 

Here X{} is a 9j symbol for 9 ,as defined by Griffiths'! 
Equation (15) is useful for the description of two elec
tron operators, or for certain vibronic interactions, 
when highly degenerate vibrational modes are described 
by means of angular momentum eigenfunctions4 - S 

which couple to the electronic angular momentum. 

The property of invariance of the U coefficients can be 
used to obtain expressions for wavefunctions of higher 
L values in unusual coordinate systems, when those of 

In the proof of Eq. (11) use is made of the orthogonality 
of the V coefficients and of the following property of the 
U coefficients: 

x (k 2Q2 Ik 2r 2Y2) 

x (k3r3Y3Ik3Q3) 

_ (rlr2 r 3) I klk2 k 3l 
_ V U\ ). 

Yl YZY3 Ir1 r 2r 3 \ 
(12) 

The reciprocal of Eq. (11) gives the reduction of a sphe
rical irreducible product in terms of irreducible pro
ducts of 9 -tensors: 

(13) 

Equation (13) is proved by a method similar to that of 
the proof of Eq. (11). The combination of both of these 
equations allows us to establish the following normaliz
ations for the U -coefficients for any set of given k 1 k 2k 3: 

(14a) 

(14b) 

Equation (13) is particularly useful since it admits the 
immediate adaptation of mixed tensor operators for 
spherical symmetry to deal with lower symmetry. We 
thus consider a mixed tensor operator of rank k r, being 
of spherical rank kl with respect to part 1 of the sys
tem and k2 with respect to part 2, {k 1 (i) k2 -7 kr}. In a 
clumsy but fairly obvious notation we take the wave
functions Ilaa(l); lbb(2): r~2) and Ilce(1); ldd(2):r~2)' 
and we calculate the matrix element 

(15) 

low L values are known or can be obtained by direct me
thods. The formula which will accomplish this expresses 
one of the transformation coefficients (krylkq) in terms 
of two other transformation coeffiCients, two V's and one 
U. It is,in fact,easy to prove the following equation: 
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x ~ (_I)k3-Q3V(k1k2k ) 
Qlq2 q1q2 - q 
YIl'2 

(16) 

It is to be noted that in case complex functions are de

sired or used, V(~ ~~~~~) in Eq. (16) as well as in all other 

pertinent equations in this paper should be replaced by 

[_lt3+Y3V(I'lr2I'3) .1 
YIY2-Y3 

Example: g -tensorial expression of spin-spin coup
ling: Judd2 gives the following expression for the spin
spin coupling Hamiltonian in spherical symmetry 

(
2k + 5)! )1/2 

V -"'(-l)k 
ss - ;;: (2k)! 

( 

rk 

x ~3 ({k + 2}1 0 {k} 2 ~ {2} I {Sl 0 S2 --) 2}) 
rk+ 

2 

where the vertical bar indicates a scalar product of ten
sor operators. We have 

({k} I {k}) '" ~ (- I)Q {kq}{k - q}. 
Q 

This scalar product can be expressed in terms of our 
g -tensors, and we have 

({k} I {k} ) = ~ {kry}{kry} '" ~ ({kr} I {kr}). (18) 
ry r 

The scalar product between the second rank tensors de
composes thus into a T 2g part and an E g part, corres
ponding to 0 h symmetry. 

To make our example precise, suppose we wish to cal
culate the matrix element of V s s between the ground 
state 6A 1 and a charge transfer state 6T 2 of a 3d 5_ 
system irf cubic symmetry. This limits the sum in Eq. 
(16) to just the r = T2 term. Since in Eq.(16) k '" 2 for 
Vss ' the matrix element reduces to bielectronic matrix 
elements between two-electron triplet functions only. 
This severely limits the extension of the fractional pa
rentage expressions necessary to express the states. 
We have, for the spin part of (6A1i Vss I 6T 2)' in the nota
tion of Eq. (13) 

(Hili {I 0 1 --) 2T 2}11 HI) 

= «H)IT111 {I 0 1 --) 2T211(H)IT~ 

'" U l~1~1:2~ ~H)111 {10 1 --) 2} II (H)I) 

' , 22 j, ~ {3 

1
ll1l 

"'U~~1~1:2\ ffi HI ~11{1}\I~/ =2' 
112 

(19) 

where use has been made of Eqs. (13) and (7) and the 
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standard expansion of the 2 -electron" spherical" ma
trix element 2 in terms of a 9j symbol. Here Tl := T 19 

in Ok and T2 in Td symmetry. 

For the orbital part, we first observe that, in general, if 
molecular orbitals are used, there is a "local" part of 
the orbital matrix element, in which all four atomic func
tions are centered at the same atom, and a nonlocal 
part7 which is not a priori negligible, but which can be 
reduced to a sum over one-center functionals by means 
of the alpha -function development of Lowdin. 8,9 Once 
this reduction is made, we can apply directly Eq. (15) 
which leads us to the expressions found in atomic spec
troscopy, and which can be expressed by means of a 
generalization of the radial integrals introduced by 
Horie.10 

Mk(abcd) '" 1000 

r
2
dr !a(r)!c(r) f r~Ub(r1)!d(r l)dr. 

k+3 0 
r (20) 

APPENDIX A: VALUES OF U l~:~:r'\ FOR 11/2/3 .;;; 4 

AND II = 6,12 = 13 = 3. GROUPS 0 OR Td 

The table gives U2 in "prime factors" notation.l1 Suc
cessive figures are the exponents of 2,3,5'" in the de
composition of U2 in prime factors, a negative exponent 
is underlined. An asterisk indicates that the negative 
square root should be taken (*). ° means U = O. Tl = 
T1(O) or T 2 (Td ). When one l = O,we have 

lll' 0 ~ ([rl)1/2 U - - 1) 1) • rr'A
1 

- [l] I'l' Il' 

II I 1 f U = 1 evidently. 
T1T1T{ 

APPENDIX B: PROOF OF EO. (7) 

In terms of the definition of the basis functions Izry) and 
of the g-tensors{kry}[Eqs.(I) and (3)] we may write the 
matrix element of a g - tensor component: 

(IT'y'l {kry}\l"r"y") 

= ~ (l'r'y'll'm ')(kry I kq)(l'Tlylll"m ") 
m'mllq 

x (z'm'l {kq} I l "m II) 

~ (IT'yllllml)(krylkq)(l'T"y''lllm")(-I)I'-m' 
m'm"q 

x V ( l'l"k \ (l'\{k}l\lll). 
-m'm"q) 

(B1) 

Via (lTlyllllm') = (l'm'll'r'y/)* = (- l)m'(l' - m IlTly') 
(valid for the real component systems for the reps of g), 
we have 

~ (l' - mlllT'y'){kql kry)(l"m" Il'T"y") v( lll?lI) 
m'm"q - m m q 

x (- 1)I'(l'I\{k}\\l") 

= 6 (l'm'l IT'y')(kql kry)(l "m II I l'Tly") V (~:~~q) 
m'm"q ~ 

x (- 1)1'(l'll{k}\\l"). 

We may compare this expression with Eq. (6) of the text. 
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211 
2 1 1 
221 
221 
222 
222 
222 
321 
3 2 1 
3 2 1 
3 2 1 
321 
3 2 2 
322 
322 
322 
3 2 2 
3 3 1 
3 3 1 
331 
3 3 1 
332 
332 
332 
332 
332 
332 
333 
333 
333 
333 
333 
422 

U2 

011 
101 

*001 
101 
0211 

*11 n 
30n 

*0001 
*0211 
0001 
1111 
1001 
0001 

*2111 
0--

*1111 
*1101 
0001 
3201 
3001 
3111 

*3111 
2011 

*31 n 
- 0-

'3001 
0001 
1001 
0001 

0-
0001 

0-
'I 2 1 

422 
422 
4 2 2 
4 2 2 
4 2 2 
422 
4 2 2 
4 3 1 
4 3 1 
431 
431 
4 3 1 
4 3 1 
431 
431 
432 
4 3 2 
4 3 2 
432 
4 3 2 
4 3 2 
432 
4 3 2 
433 
4 3 3 
433 
433 
4 3 3 
4 3 3 
433 
433 
433 
4 3 3 

* . j3 3 1/ (3 X 5)1/2 
Forexample,u/TlT2Tl\ =+ 23 x7 . 

011 
3201 
1101 

*2101 
'U)Ol 

o 
11 

'02 
0001 

'0211 
'311 -
3-
0001 

*3111 
'3201 
'02 -
0001 
0211 

'31n 
3 ---

311 - a 
011 

*1000,1 
1200,1 
'1100,1 
1011,1 

*1001,1 
'1211,1 
- -0 -

0000,1 
*0110,1 
*0111,! 

We equate the right-hand sides of Eqs. (B1) and (6), 

(
r'r''r) multiply both sides by V y'r"r and sum over y', y", and 

I J. S. Griffith, The irreduCible tensor method for molecular symmetry groups 
(Prentice-Hall, Englewood Cliffs, N.J., 1962). 

2 B. R. Judd, Operator techniques in atomic spectroscopy (McGraw-Hill, New 
York,1963). 

3 G. Racah, Phys. Rev. 76, 1352 (1949). 
4 A. Abragam and B. Bleaney, Electron paramagnetic resonance of transition ions 

(Clarendon Press, Oxford, England, 1970). 
'w. Moffit and W. Thorson, Phys. Rev. J08, 1251 (1957). 

433 
433 
433 
433 
441 
441 
441 
4 4 1 
441 
442 
442 
442 
4 4 2 
442 
4 4 2 
442 
442 
4 4 2 
4 4 2 
4 4 2 
443 
4 4 3 
443 
4 4 3 
443 
443 
4 4 3 
4 4 3 
4 4 3 
4 4 3 
443 
443 
443 

2001,1 
'0111,1 
1110,1 

'10 01,1 
02 -

'0211 
*011 
'3n 
3111 
3100,1 
0100,1 

'6211,1 
0111,1 
0010,1 

'3011,1 
f3012,1 
2111,1 

*2111,1 
*4111,1 
0010,1 
1201,1 
1110,1 

*1212,1 
1000,1 

*1111,12 
'1101,1 
*0201,1 
011 1,1 
-0 -

'2110,1 
0000,1 

'1000,1 
*1001,! 

4 4 3 
4 4 4 
4 4 4 
444 
4 4 4 
4 4 4 
4 4 4 
4 4 4 
444 
4 4 4 
444 
4 4 4 
4 4 4 
6 3 3 
6 3 3 
6 3 3 
633 
633 
6 3 3 
6 3 3 
6 3 3 
6 3 3 
633 
6 3 3 
6 3 3 
6 3 3 
6 3 3 
633 
6 3 3 
633 
633 
6 3 3 

0111,1 
1302,11 
2300,11 

*1202,11 
1200,11 
9311,11 
3213,n 
3211,11 
111 D, 1I 
- 0 --

4111,11 
'8310,11 
0111,11 

'3101,11 
1021,11 

*1401,11 
1000,01 
1020,11 
1010,11 
1200,11 
- 0 --

1110,11 
- 0 --

0200,11 
6110,11 

*6000,n 
*6112,n 
3000,11 
6120,01 

*6210,01 
6300,01 
- 0 -

y, using the orthonormality relations for the V coeffi
cients. 1 This yields Eq. 7 when the U are defined as in 
Eq.8. 
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II M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooteu, Jr., The 3-j and 6-j 
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Solutions of a nonlinear integral equation for high energy scattering.· III. 
Analyticity of solutions in a parameter, explored numerically 
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Solutions of lile Ball Zacharia,en equation, discussed in Iwo previous papers. depend analytically on a parameter c which 
measures the' ~lrenglh of particle production. Numerical experiments. designed to elucidate the structure of the Riemann 
surface. arc reported. The results arc consistent with a very pretty hypothesis which (lc:-.clihcs the Riemanll SUI face 
completely. 

1. INTRODUCTION 

The existence of an infinite class of solutions of the 
Ball-Zachariasen equation l was proved in Paper I of 
this investigation. 2 These solutions exist for sufficient
ly small values of a parameter c, which measures the 
strength of particle production. The solutions cp(b, c) 
(where cp is Simply related to a Hankel transform of 
the two-particle scattering amplitude and b is the im
pact parameter), are analytic in c inside some circle 
I c I = y at each b. The radius y is limited by the tech
nical requirements of the existence proof, in such a way 
that the nearest singularity lies on a circle which is, 
undoubtedly, a good deal larger than I c I = y. 

Since the values of c for which the existence proof 
succeeds are too small to be interesting phYSically, a 
numerical continuation to larger values of c was attempt
ed in Paper 11.2 Some representative small c solutions 
were computed, and were continued along the real c 
axis until a singularity of the Frechet derivative of the 
nonlinear Ball-Zachariasen operator was encountered. 
This prevented further continuation along the real axisj 
but it was possible to circumvent the singularity by the 
detour into the complex c plane. Upon returning to the 
real axis it was found that the solutions were complex, 
which suggests that the singularity of the Frechet de
rivative might be associated witha branch point of 
cp (b, c) regarded as a function of c. 

In the present paper we report on numerical experiments 
which were designed to explore the Riemann surface of 
cp (b, c) as a function of c. The results were consistent 
with a remarkably simple hypothesis: namely, that for 
each b the function cp(b, c) is analytic on a two-sheeted 
Riemann surface, each sheet conSisting of a plane cut 
along the real axis from some point db) to infinity. The 
branch point db) increases monotonically with b. 

As in Papers I and II, we still find no eVidence that the 
Ball- Zachariasen equation has solutions resembling 
experiment. We think, however, that this work is worth 
reporting for its mathematical interest, and as an un
usual application of a computer for inductive determina
tion of analyticity properties of a complicated equation. 
Our work is incomplete in that we cannot provide an 
analytic proof of our hypothesis. Nevertheless, our con
jecture about the structure of the Riemann surface is 
quite definite. It might be pursued analytically, and it 
certainly can be subjected to more demanding numerical 
tests. 

In Sec. 2 we recall some properties of the equation, and 
state carefully the analyticity properties which are 
suggested by the numerical data. Section 3 is a detailed 
description of the numerical work, and Sec. 4 contains 
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an heuristic argument which is intended to make plaus
ible our conjecture concerning analyticity. 

2. THE RIEMANN SURFACE OF THE SOLUTION 

After a Hankel transformation, 1 the Ball- Zachariasen 
equation has the form 

j(b) = j2(b) + C(b;!, c), 

where 

C(bjJ, c) = 100 

dxJ o(bx)g(x)(eCg(X) - 1), 
o 

g(x) = 100 

bdbJ O(bx)j2(b). 
o 

(2.1) 

(2.2) 

(2.3) 

The notation is the same as in Papers I and 11:2 The 
elastic scattering amplitude is sj(x), where x = (- t )1/2 

is the magnitude of momentum transfer, and s is the 
squared energy. The Hankel transform of j (x) by the 
zeroth-order Bessel function J o is j(b), where b is the 
impact parameter: 

(2.4) 

Hence g(x) is a high energy approximation to the elastic 
unitarity integral. At c = 0 the integral equation (2. 1) 
reduces to 

(2.5) 

which is solved by any function having values 0 or 1 only. 
Among all such step functions we consider only those 
having support in a finite region. An arbitrary member 
of this class is denoted by h(b). As was shown in Paper 
I, it is convenient to write j(b) for c ;" 0 as h(b) plus a 
remainder, as follows: 

j(b) = h(b) + [1 - 2h(b)]cp(b). (2.6) 

The advantage of this change of variable is that cp (b) 
satisfies an integral equation which has a unique non
trivial solution in the subset K of a certain Banach space 
B for each h, provided that c is sufficiently small. The 
function <p is continuous, and it vanishes uniformly as 
c goes to zero, so that h (b) is the limiting form of j (b). 
The continuity of cp(b) Simplifies the proof of the exis
tence theorem (Paper I) and eases numerical solution 
of the equation. 

To find the equation for cp(b), we note the identities 

j_j2 = cp _ cp2, (cp - h)2 =j2. (2.7) 

Thus 

cp(b) = cp2(b) + B(bj cp, c), (2.8) 
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where 

B(bj ¢, c) = Joo x dx J o(bx)g(x)(eCg(x) - 1), 
o 

g(x) = Joo b db J o(bx){h(b)[l - 2¢(b)] + ¢2(b)}. 
o 

(2.9) 

(2.10) 

Our numerical calculations are based on Eq. (2.8) with 
a specific choice of h(b)jnamely, 

h(b) = e(r - b) = )
1, 

0, 

b < r, 

b> r. 
(2.11) 

Because of the scaling property of the equation explained 
in Paper I, the value of the radius r that one chooses is 
immaterial. As in Paper II, we put r = 1. 41 (GeV)-l, and 
measure x in units of GeV. The restriction to the simple 
step function (2. 11) seemed unduly narrow in the work 
of Paper II. In the present report we shall find that in
finitely many other solutions can be reached by continua
tion in c of ¢(b; c), where one starts with the ¢ corres
ponding to (2.11) at small c. These solutions correspond 
to various step functions for J(b) in the limit c = O. This 
comes about by ¢(b; c) developing discontinuities in b 
as c passes through branch pOints, so that if c = 0 is 
reached by following an appropriate complex path, 
limc~o¢ (b, c) is itself a step function. 

We note an alternative way of introducing the step func
tions explicity. If Eq. (2.1) is solved for J in terms of 
C, we can write 

J(b) = HI - S(b)[l - 4C(b;!, C)]1/2}, (2.12) 

where S(b) is any function with values ± 1 almost every
where (at pOints where S changes sign, a set of measure 
zero, it need not be defined). Since C(b;!, 0) = 0, a solu
tion of (2.12) with an arbitrary S will be a solution of 
(2.1) having the arbitrary step function M1 - S(b)] as 
its c = 0 limit. It will not be necessary to solve or 
analyze Eq. (2. 12), since our discussion in terms of ¢ 
will also yield arbitrary step functions at c = 0. 

We shall be interested, however, in a similar equation 
for ¢,which is obtained by solving (2.8). In this case, 
we put the arbitrary step function in front of the square 
root equal to 1, and obtain 

¢(b) = M1 - [1 - 4B(b; ¢, c)J1/2}. (2.13) 

The unique solution of (2.8) in the subspace K at small 
c is continuous in b, real, positive, and less than i. Con
sequently, it is represented by (2.13) with the square 
root defined to be positive. 

The numerical solution we begin with at small c has the 
representation (2.13). Furthermore, our numerical re
sults are consistent with the following hypotheses about 
the solutions obtained by continuation in c of this solu
tion [the continuation being performed by solving (2.8) 
at su·ccessive values of c]: 

(i) B(b; ¢(', c), c) is an entire function of c for each b. 

(ii) For any b (except those in a set of measure zero) 
the solution ¢(b, c) is given by formula (2.13) along any 
complex c path which starts at c = 0. At c = 0, the 
square root is defined to be 1, and at subsequent pOints 
on the path its value is determined by analytic continua
tion. 

The analyticity of B in c implies that the only singulari
ties of ¢(b, c) in the finite plane, where ¢ is regarded as 
a function of c at fixed b, arise from zeros of 1 - 4B in 

(2.13). The numerical results suggest that there is 
just one such zero at c = c(b) on the positive real axis, 
with c(b) being a monotonically increasing function of b. 
In that case, ¢(b, c) has only a simple square-root 
branch point, with the associated two-sheeted Riemann 
surface. Because of the dependence of the branch point 
on b, this simple structure can result in a very com
plicated b dependence of ¢(b, c) after the path in the c 
plane has passed through branch cuts several times. 
This structure arises because as b is varied, with c 
fixed at the end of the continuation path, the value of the 
square root in Eq. (2. 13) may come from first one and 
then the other of its two Riemann sheets. This gives 
discontinuities in b, and at such discontinuities ¢(b, c) 
is undefined. The set of measure zero mentioned in 
hypothesis (ii) is just the set of points of discontinuity. 
At such points, ¢(b, c) is easily defined by continuity 
from the right or left, and with that definition it is 
analytic in c. 

Since the calculations were restricted to a small part 
of the Riemann surface, the evidence in favor of hypo
theses (i) and (ii) is not overwhelming. One could easily 
weaken the hypotheses without contradicting the numeri
cal data. For instance, in place of (i) we could assume 
analyticity in a sufficiently large finite region of the c 
plane. In Sec. 4 we shall give an argument for plausi
bility of (0 or a weakened form thereof. A real proof 
appears to be quite difficult. 

3. NUMERICAL EVIDENCE 

Equation (2.8), which we write as F = ¢ - ¢2 - B = 0, 
is solved by the Newton-Kantorovich (NK) method3 •2 

in the modified form 3 in which the Frechet derivative 
F¢ is computed just once, at the beginning of the sequence. 
In Paper II we used the result of a successful NK itera
tion with an altered value of c. We have now improved 
the program by making a linear extrapolation in c to 
obtain the starting point for the new sequence of appro
ximations. That is, if ¢(b, c) is our approximation for 
the limit of an NK sequence, the next sequence is begun 
with 

¢o(b, c + D.cl = ¢(b, c) + ~(b, c)D.C, (3.1) 

where a¢/ac is obtained by solving the linear equation 

F = ¢ - ¢2 - B. 

(3.2) 

(3.3) 

This procedure reduced the number of steps D.C required 
to move a given distance in c by a factor of five or so 
on the average. As in Paper II, automatic adjustment of 
D.C was employed: If the sequence failed to converge, 
D.C was reduced to OLD.C, OL < 1, and a new sequence was 
generated with the result of the last succes!:iful iteration 
as starting point. In the present calculations the limit 
on relative errors was E = 0.01 [see Eq. (2. 6)f£, Paper 
II]. 

In Paper II we found the first singularity of the Frechet 
derivative (in a continuation from c = 0 along the posi
tive c axis) at c = Co = 0.5535. Aswasnotedpreviously,2 
this is the first value of c for which 1 - 2¢ has a zero, 
and for which the Frechet derivative F¢ becomes an in
tegral operator of the third kind. 1 Equivalently, it is the 
first c where 1 - 4B has a zero. The zero of 1 - 2¢ 
and 1 - 4B occurs at b = 0, so according to hypotheses 
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(i) and (ii) of the previous section, cp(O, c) should have a 
square-root branch point at c = co' 

The continuation by NK iteration came to a halt at c = co' 
in the sense that the allowed step AC converged to zero 
as c a was approached. In order to bypass the difficult 
point, an excursion into the complex c plane was made. 
In Paper II, various points on the real c axis to the right 
of c a were reached via paths passing through the upper 
half plane. Since the solutions were complex for c> co' 
a branch point at c = c a was suggested. 

To investigate the alleged branch point, we now follow 
paths which encircle co' The first such path is shown 
in Fig. 1. The point Cl was reached in our previous 
calculations. The corresponding solution is plotted in 
Fig. 2. Note that we have left gaps in the curves near 
the breaks in slope. In the gaps we have no evaluations 
of the functions, because of the limited number of mesh 
points in the calculation. We continue into the lower 
hali-plane to cZ' through the supposed cut. A discontin
uity of Recp seems to develop as soon as one passes 
into the lower half-plane. This is illustrated in Fig. 3, 
where cp is plotted for C = cz. The apparent discontin
uity of Recp in Fig. 3 occurs at the value of b where the 
break of Recp is located in Fig. 1. This discontinuity 
persists when we return to the real axis at c3 < co, as 
is seen in Fig. 4. The solution is now real to high 
accuracy. 
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FIG. 1: Paths for analytic continuation of solution in 
complex c plane, beginning with solution computed in Paper 1. 
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FIGS. 2-7: Real parts (solid line) and imaginClry parts \dashed line) of solutions at the points '"1 through '"7 of Fig. 1. 
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We proceed toward the origin on the real axis and find 
that the solution tends toward a step function, which 
equals one for b < b1 ~ 0.3 and zero for b > b1 (see 
Fig. 5). By referring to Eq. (2. 5), we see that the corres
ponding J(b), in the limit c = 0, is as follows: 

o < b < b v 

b 1 < b < r , 

r <b<oo. 

(3.4) 

Since J(b), in the limit c = 0, must be a function :vith 
values 0 or 1 only, it was inevitable that we obtam some 
sort of step function in the limit. The result (3.4) is to 
be compared with J(b) = e(r - b), our original solution 
at c = 0 on the" first sheet." The value of b 1 in (3.4) 
depends on the point c 1 at which the real c axis was 
crossed. 

Next we go from C3 through c6 to c 7, which is nearly 
equal to c l' A comparison of Fig. 2 with Fig. 7 s.howS 
that the solutions for c1 and c 7 are complex conJugates 
to an excellent approximation. 

These results may be understood in terms of hypotheses 
(i) and (ii) of Sec. 2. To the largest values of c on the 
positive real axis that we have reached, B increases 
monotonically with c at each b. At each c > 0, b de
creases monotonically with b. Let us assume that these 
monotonic behaviors persist to arbitrarily large values 
of c on the real axis. For c> co' we then have a unique 
zero of 1 - 4B as a function of b at a point b(c) > 0, 
since B > t at small b. For b ? 0 there is a unique real 
zero of 1 - 4B as a function of c, at a point c(b) ? CO" 
There could also be complex zeros of 1 - 4B as a func
tion of c. There is no numerical evidence for complex 
zeros, however, so we shall assume that there are none. 
Now consider our initial solutions of Eq. (2. 8), obtained 
by iteration for real c < Co- These solve Eq. (2.13), 
where (1 - 4B)l/2 is defined to be positive for all b. If 
B(b; rp(., c), c) is entire in c [Hypothesis (OJ, then analy
tic continuation in c of the square root on its first 
Riemann sheet yields 

lim. [1 - 4B(b, y)Jl/2 
y-c ± ,0 

{
I [1 - 4B(b, c ± iO)jl/21 , 

= 'f il [1 - 4B(b, c ± iO)jl/21, 

where we use the abbreviated notation 

B(b, c) = B(b; rp(., c), c). 

c < c(b), 

c> c(b), 

Since Eq. (3. 5) holds for any b, and c ~ c(b) implies 
b § b (e), it follows that 

lim. [1 - 4B(b,y)jl/2 
y-+c±zo 

= {'f il [1 - 4B(b, c ± i0)]1/21 , 

1[1 - 4B(b, c ± iO)j1/21 , 

b < b(e), 

b > b(c). 

(3.5) 

(3.6) 

Equations (3.5) and (3.6) hold when y is on the first 
Riemann sheet. On the second sheet, of course, the 
signs of the right-hand sides of the equations are to be 
changed. In the following, it will be convenient to give 
the symbol [1 - 4B(b, c)j1/2 an invariant meaning, so 
that its value depends only on the values of band c, and 
not on the sheet in which c is located. Throughout its 
Riemann surface, the square root can then be written 
(in terms of its principal branch) as 

S(b, r)[l - 4B(b, C)jl/2, (3.7) 

where (1 - 4B)1/2 is defined so that it satisfies (3.5) 
and (3.6), and S(b, r) is a step function with values ± 1 
as a function of b. The argument r denotes the path in 
the Riemann surface by which the point c of interest is 
reached. Since the branch point db) depends on b, S in 
(3.7) can be + 1 for certain intervals of b, and - 1 for 
other intervals. 

The qualitative behavior of all our curves follows from 
(3.5), (3.6), and the formula 

rp(b, c) = HI - S(b, r)[l - 4B(b, c)jl/2}. (3.8) 

Consider first rp(b, C1), graphed in Fig. 2, with r being 
the path shown in Fig. I. Since Imrp = 0 for b > b 1 3' 0.3, 
we conclude from (3.6) that b(c 1) = b v and S(b, r) = 
db - b 1)' where 

x<O 

x>O 

Then (3.8) and (3.6) imply Imrp > 0 and Rerp = ~ for 
b < band 0 < Re¢ < ~ for b > b l' all of which agrees 

1 20 d' . R'+' 1 with the data except for a /0 Iscrepancy m e'l' ="2' 
(The 2°1o discrepancy here, and slightly bigger disagree
ments elsewhere, may reasonably be ascribed to numeri
cal error. The computer program was not designed to 
handle the Hankel transforms of discontinuous functions 
which arise. We are surprised that the program works 
as well as it does in such a difficult situation.) When 
the path of continuation passes downward through the 
real axis at c = c1' we are passing onto the second 
sheet of rp(b, c) if b < b(e1)' since for such b we have 
c 1 > c(b). We remain on the first sheet of rp (b, c) for 
b> b(e1)' since then c 1 < db). This explains .the app~
rent discontinuities in the curves at c = c 2' FIg. 3, WhICh 
are now to be interpreted as genuine discontinuities. 
For b < b(e1) in Fig. 3, one is seeing second-sheet values, 
while for b > b(e 1) one sees first- sheet values: In 
passing from c 1 to c 2' B has remained predommantly 
real, and ReB has decreased. 

When the real axis is regained at c = c3' Fig. 4, the 
solution is real to very high accuracy. We still have 
S(b, r) = E(b - b 1). Since c3 < co, this is expected if 

rp(b, c*) = rp(b, c)*, (3.9) 

where c and c* are both on a given cut plane, with cut 
[co, 00). The reality property (3.9) is in fact easily es
tablished by noting that rp(b, c*) and rp(b, c)* both satisfy 
the equation 

rp = rp2 + B(b; rp, c*). (3.10) 

For c inside a small circle about the origin, (3.10) has 
a unique solution in the space K described in Paper I. 
Hence (3.9) holds for c near the origin and, hence, every
where on the cut plane. The reality of rp(b, C3)' b < b(C1), 
is achieved by 4B becoming less than 1, whereas it was 
greater than 1 in this region of b at c = c 1 • As we pass 
from c 3 to c4 and c5 (Fig. 5), B continues to decrease. 
That is expected, since B = 0 at c = O. At c5 = 0.0889, 
we have a function which nicely resembles the step func
tion which one should have at c = O. 

At c6 and c7 , we have nearly the complex conjugates of 
the functions at c 2 and c 1> respectively. This agrees 
with (3.9), to the extent that c 2 3' c 6 *, c 1 ~ c 7 *. (One 
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would have liked c 2 = c6 *, c 1 = c 7 *, but that was awk
ward to achieve, because of the automatic decrementing 
of flc when sequences failed to converge). 

Note that the definition 

CP(b(cl)' c) = lim ¢(b', c), (3.11) 
b '~b (c 1)- a 

mentioned in Sec. 2, makes cp(b(c 1)' c) an analytic function 
of c, which at any particular C is on the same sheet 
(first or second) as cp(b, c), where b(cl) - E < b < b(cl) 
for some E > O. If instead the limit b' --7 b(cl) + 0 were 
adopted, the function at any c would be on the same 
sheet as ¢(b, c), with b(cl) < b < b(cl) + E. 

As a function of b, cp(b, c) retains a "memory" of the 
point at which the path of continuation r crosses the 
line Co .oS c < 00; this is indicated by the factor S(b, r) 
in (3.8). The phenomenon has a simple explanation in 
terms of hypotheses (i) and (ii), as we have seen; but it 
leads to the amusing possibility of multiple b discon
tinuities of cp(b, c) after several loops around co' pro-
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FIG.8: Paths for analytic continuation of solution in 
complex c plane, beginning with solution at e(i in Fig. 1. 
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vided the real axis is crossed at different points 
c > Co on different loops. We illustrate this by the 
additional continuations shown in Fig. 8. We pass from 
our previous pOint C6 to a point Cs < c 1 and also to 
c 9 > c 1 • At C s (Fig. 9), the function is On the upper 
side of the second sheet cut for 0 < b < b(cs) ~ 0.13, to 
the left of the cut on the second sheet for b (cs) < b < b(CI), 
and to the left of the cut on the first sheet for b > b(cl)' 
Thus, in Eq. (3. 8) one has S(b, r) = E(b - b Jdb - bs)' 
where b i = b(c i)' This accounts for the discontinuities 
of Recp at b = b(cs) and b = b(cl)' and for the vanishing 
of Imcp for b > b(cs)' At c 9 (Fig.l0),cp is evaluated on 
the upper side of the second sheet cut for 0 < b < b(c 1), 

on the upper side of the first sheet cut for 
b(cl) < b < b(c9) ~ 0.53, and to the left of the cut on the 
first sheet for b > b(c 9). Thus, we get the change in 
sign of Imcp at b = b(cl)' etc. When the solution is con
tinued from c9 to CIa and c ll (Figs. 11 and 12), we see 
another step function developing. Passing from Cll to 
C = 0 would give a step function with support in the re
gion b(cIL < b < b(c9)' According to Eq. (2.5), this 
means aj(b, 0) as follows: 

O<b<b(cl)' 

b(cl) < b < b(c9)' 

b(c9) < b < r, 

r < b < 00. 

(3.12) 

It is now clear that by appropriate loops ~round co, one 
can produce arbitrary step functions for j(b, 0) . 

4. REMARKS ON ANALYTICITY OF B 

We have seen that the numerical results agree nicely 
with the hypothesis that B(bj cp (', c), cl is an entire func-
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FIGS. 9-12: Real parts (solid line) and imaginary parts (dashed line) of solutions at the points c 8 through C
'1 

of Fig. 8. 
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tion of c, or is at least analytic in a region including that 
we have explored. In order to see hueristically how this 
might come about, we can examine the Cauchy-Riemann 
equations for B. Let c :::= X + iy, and note that since 
B = ¢ - ¢2,we have 

aB=(1_2-+.)a¢=B a¢+B 
ax 'I' ax ¢ ax x' 

(4.1) 

aB = (1 _ 2-+') a¢ = B ~ + iB 
ay 'I' ay ¢ ay x' 

(4.2) 

where B ¢ denotes the Fnkhet derivative of B with re
spect to ¢, and B x is the derivative of B with respect 
to its explicit x dependence. In (4.2) we have used the 
obvious relation B = iB x' The expression for the inte
gral operator B ¢ i~ a s follows: 

B¢X(b) = J
o

oo 
K(b, b'; ¢, c)X(b')b' db', 

K(b. b'; ¢, c) = 2 Co x dx J.o(bx)Jo(b'x) 
. 0 

x {I - ecg <.x{1 + cg(x)]}[h(b') - ¢(b')). (4.3) 

Equation (4.1) and (4.2) may be regarded as integral 
equations for a¢lox and o¢loy, the two equations differ
ing only by a factor of i in the inhomogeneous terms. 
When the operator M = (1 - 2¢)1 - B ¢' defined on some 
appropriate space S, has an inverse on S, we have solu
tions of the equations such that 

~_ .a¢ 
oy - I ax' 

If Eq.(4.4) holds at c = 2, and if (1- 2¢)o¢/ax and 

(4.4) 

(1 - 2¢)acp/ay are continuous in x and y in a neighbor
hood of 2, then by (4. 1) and (4.2) we see that B is analy
tic at 2. This follows from the Cauchy-Riemann condi
tion 

aB . oB 
-=1-
ay ax' 

(4.5) 

and the continuity of aBlax and aB/ay in x and y near 2. 
It is reasonable to suppose that M has an inverse, yield
ing solutions of (4. 1) and (4.2) with the properties men
tioned above, in the entire c plane minus a set of mea
sure zero. The inverse can fail to exist at values of c 
for which 1 - 2cp = 0 at some b. Then M is an integral 
operator of the third kind. 4 , 2 In general, third-kind 
operators have no inverse on a space of continuous or 
piece-wise continuous functions. Suppose that 1 - 2¢ is 
initially free of zeros, but that c approaches a value c* 
for which it acquires a zero. Then acp/ax and acp/oy 
might acquire Singularities, but the Cauchy-Riemann 
conditions for B at c * might be preserved by virtue of 
the fortunate factor 1 - 2¢ in (4. 1) and (4.2). If a¢/ax 
and acp/ay become infinite only at values of the pair 
(b, c) for which 1 - 2¢ = 0, then it is possible for oBI ax 
and oB/ay to be well behaved at c*. 

If we assume the result we would like to prove, that B 
is analytic in c, we can see that this picture works out 
consistently. Since 1 - 2¢ = 0 is equivalent to B = t 
we have from Eq. (3.8) that 

1 - 2CP(b o' c) = [1 - 4B(b o' C)]1/2 ~ a(bo)(c - C*}1/2, 
(4.6) 

o¢ a(bo) 
-(b c) ~ - --(c - c*)-1/2 
ax 0' 4 ' 

(4.7) 

a¢ a(bo) 
-(b c) ~ - i --(c - c*)-1/2 
ay 0' 4 ' 

(4.8) 

as c approaches c*. Hence, the factor 1 - 2cp(b o' c) 
cancels the Singularities of the derivatives as it should, 
and the Cauchy-Riemann conditions for B are main
tained. 

If the operator M is Singular on a space of continuous 
functions, it still could be nonsingular on some bigger 
space, which might include functions with just the pro
perties we need to satisfy the Cauchy-Riemann condi
tions on B. To see how this might happen, suppose we 
first try to find the behavior of 1 - 2¢ as a function of 
b near its zero. For this purpose it is reasonable to 
assume that B(b; c*) has a continuous first derivative 
in b near the point b(c*) at which B(bj n) = ~. This 
assumption is in accord with the data; in fact, B seems 
to be a perfectly smooth, monotonic function of b at all 
c. Since our functions cp(b; c) seem to have the same 
asymptotic behavior in b as the small c solutions of 
Paper I, this can be attributed to the good convergence 
of the integral which defines B. In Paper I, this good 
convergence made aB/ab continuous at all b. For b 
near bo = bk*), we then find from Eq. (4. 5) and Taylor's 
theorem for B that 1 - 2¢ behaves as (b - b 0)1/2. Since 
aB/ax is supposed to be bounded, we then expect from 
Eq. \4. 1) that a¢/ax will behave as (b - b O)-1/2 near 
b - bO' Now make the following changes of variable in 
the integral equation for a¢/ax: 

X(b) = [1 - 2¢(b)jl/2 E!Eill. 
ax 

The equation for X is 

x(b) = ~co K(b,b';CP,c)x(b')b' db' + B)b;¢,c), 

where 

K(b, b'; cp, c) = K(b, b'; p, c) 
[1 - 2¢(b)jl/2[1- 2¢(b')]1/2 ' 

A Bx(b; ¢, c) 
B (b' cp c) - --"----

x " -ll - 2¢(b)J1/2 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

Since 1 - 2¢ vanishes as (b - bO)1/2, the functions K 
and Ex will be square-integrable near b, b' = bO' Let 
us suppose that they are also square-integrable at in
finity (without trying to justify the assumption for now). 
Then we can apply L2 Fredholm theory to (4.10). Barr
ing unit eigenvalues of the kernel, we have a unique L2 
solution X. This solution behaves as (b - bo) -1/4 near 
b = bo, as one can see by applying Schwarz's inequality 
to the integral in Eq. (4. 10). The expected behavior of 
(b - bO)-I/2 for ocp/ax then follows from (4.9). Bya 
Simple modification of the equation, we have succeeded 
in accommodating functions which lie outside the space of 
continuous (hence bounded) functions. Unfortunately, 
this discussion does not throw any light on the behavior 
of the solution as a function of c near c = c *; that is, it 
does not help one establish Equations (4.6)-(4.8). 

We found that it was possible to continue through the 
real c axis for c> co, but impossible to pass through 
the point c = co, regardless of the direction of approach 
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to co' The reason for this appears to be that 1 - 2¢ (b, co) 
vanishes as b - bo when b tends to b o, while 1 - 2¢(b, c) 
vanishes only as (b - bO)1/2 when c> co' Thus, the 
equation is equivalent to a regular Fredholm equation 
in L2 for c> Co [namely, Eq.(4. 10)], but is singular even 
in L2 for c = co' The hypothesized linear zero of 1 -
2¢(b, co) is fully consistent with the graph of ¢(b, co) 
given in Fig. 1 of Paper II, and it means that B(b, co) has 
vanishing slope at b = boo For c> co' B(b, c) does not 
have zero slope at the point b(c) where 1 - 2¢ vanishes. 

In addition to the singularities of the operator M arising 
from zeros of 1 - 2¢, there could be ordinary Fredholm
type singularities of M. That is, (1- 2¢)-lBcp could 
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have unit eigenvalues at isolated points in the c plane. 
Such points might give singularities of B as a function 
of c; but there is no hint of such in the small region of 
the c plane that we have investigated numerically. 
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Scattering of a scalar wave from a random rough surface: A diagrammatic 
approach 
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The solution to the problem of a scalar wave scattered from a rough surface is given under the conditions that the normal 
derivative of the field vanish at the surface and that the surface height be a single·valued function with Gaussian statistics. 
The solution is in terms of a series with a diagram representation. Partial summation of the series in terms of linear integral 
equations is briefly discussed. 

I. INTRODUCTION 

The problem of scalar waves scattering from a station
ary randomly rough surface which averages to a plane 
is one of continuing interest from both theoretical and 
experimental points of view. It represents a realistic 
acoustical situation and, at least qualitatively, is rele
vant to the electromagnetic case. The usual and sim
plest approach is to calculate the scattered field in the 
Kirchhoff approximation and then calculate moments of 
fields using assumed surface statistics. 1 . 2 Clearly 
this procedure does not work for very rough surfaces. 
As a first step in a general attack on the problem of 
rough surface scattering, it is desirable to have a 
method which permits a systematic examination of the 
problem so that it is possible to say something about 
the errors committed when various approximations are 
made. In keeping with this goal we have constructed a 
solution in terms of a series expansion for moments of 
the Green's functions or alternatively for moments of 
the fields. A diagrammatic algorithm has been deve
loped for the construction of an arbitrary term in the 
expansion analogous to those used in the study of pro
pagation through a random medium. 3 The class of sur
faces studied here is restricted to those with a vanish
ing normal derivative boundary condition where the 
height of the surface is a Single-valued function with a 
mean value of zero. We also assume that spatial aver
ages can be replaced by ensemble averages over a 
multivariate Gaussian distribution of surface heights. 

In Sec. II, starting with the Helmholtz integral equa
tion' a series expansion is developed for the Fourier 
transform of the Green's function associated with a 
representative sample of the ensemble of surfaces 
under consideration. An algorithm which is appropri
ate for subsequent ensemble averaging is then con
structed for determining the individual terms in the 
series. A reduction formula is also derived which 
gives the scattered field in an asymptotic region far 
enough removed from the surface so that the cutoff 
surface modes can be neglected. 

In Sec. III a cluster expansion is developed for the 
characteristic functions associated with the ensemble 
of surfaces. The properties of the moments which are 
needed in the series expansion of the moments of 
Green's functions are discussed using this cluster ex
pansion. These results are then combined with the re
sults of Sec. II to derive an algorithm for generating a 
series expansion for the n-point moments of Green's 
functions, The reduction formula for the mutual co
herence function is derived and the lowest-order co
herent and incoherent scattering terms are shown to 
correspond to the Kirchhoff approximation. The series 
are partially summed to generate an integral equation 
for the mean Green's function which is analogous to 
Dyson's equation and an integral equation for the mu-

1903 

tual coherence function analogous to the Bethe-Sal
peter equation. An apprOximation for coherent scatter
ing that corresponds to using the lowest-order kernel 
in Dyson's equation is introduced and briefly 
discussed. 

II. DETERMINISTIC SURFACES 

A cross section through a representative surface is 
indicated in Fig.l. In all future developments we will 
assume that the average surface is perpendicular to 
the z axis. The coordinates in planes perpendicular to 
the z axis will be x and y. We will henceforth use the 
abbreviation x.L = xix + yiy' where i x and i yare unit 
vectors in the x and y directions, respectively. The 
notation sub 1. will always be used to indicate two
vectors in the transverse or x,y plane. Thus,z = 
h(x.L) defines the surface under conSideration, and Z > 
h(x.L) is the region of free propagation. The surface 
height h(xJ is assumed to be a smooth single-valued 
bounded function of x.L with zero mean value. Strictly 
speaking the condition that h(x.L) is bounded is incom
patible with a Gaussian height distribution. However, 
if the bound is made sufficiently large compared to the 
root mean squared height, then the probability of ex
ceeding the bound can be made very small. 

Since the surface is stationary, the wave equation re
duces to the Helmholtz equation on separation of the 
time variable. The Green's function satisfies the in
homogeneous Helmholtz equation 

where ko is the frequency of a point source located at 
x' (in units where the phase velocity is unity). The 
source will always be assumed to be in the free pro
pagation region, and thus z' > h(X'L)' the normal de
rivative of the Green's function vanishes, that is 

z 

z = h (x) 

FIG. 1. A cross section through a representative surface. 
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where n is the unit normal to the surface. When x is 
below the surface, GD(x Ix') is zero; the notation sub D 
indicates that the Green's function is discontinuous 
across the surface. In Appendix A the determination 
of GD is reduced to the solution of an integral equa
tion. 4 • 5 

The results are 

Gt(x'lx") = Gt(x' - x") + 2(27T)3 J d2x 1.[~ - '\l 1.h(xJ] 

x {\7'G6(x' - x s (X1.)}G!(xs (x 1.) Ix"). (1) 

where we have introduced the notation xs (X1.) for the 
location of a po in! in the surface, that is xs (X1.) = i zh 
(x 1.) + x 1.' where i z is a unit vector in the z direction. 
The "surface Green's function," Gs" (x's I x"), satisfies 
the integral equation 

Gt(xs(x~) Ix") == (27T)-3G6(xs (x'J - x") 

+ 2 J d2x1.(i z -'\l1.h(X1.)) • G6(xs(x~) -xs (X1.)) 

x Gt(xs (X1.) Ix"), (2) 

where 

G6(x) = (27T)-3 J d3k e ik' X G6(k), G6(k) = (k~ - k 2 ± iE)-l, 
(3) 

k --.. -- ---
k' k > , ~ 

~ i~ 
k"=k'- k 

-
FIG. 2. Diagram rules for Ds(k' ~,,). Each diagram in the series has 
equal weight and is constructed by multiplying the indicated factors as
sociated with the lines and vertices of the diagrams. Integration over 
the three momenta k associated with internal Cb lines completes the 
construction of the term in the series associated with the diagram. 

FIG.3. Diagrammatic representation of the series for Ds' 

} 
or 

FIG. 4. Diagrammatic summation of the series to recover the integral 
equation for D,j. 
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Gt being the Green's function for the situation where no 
surface is present, and where 

Go(x) = i(Z7T)-3 J d 3k P 0 1. i + k e ik·X (k2 - k 2 
) 

k2-k2±iE k Z L 

o Z (4) 

The P indicates the Cauchy principal value distribution. 

The integral equations (1) and (2) have a form more 
suitable for our purposes when Gt(x'lx") and G~(x'lx") 
are expressed in terms of a Fourier transform. Let 

Gt(x' Ix") = (27T)-6 J d3 k' d3 k" e iCk'.x'-kH 'X")Gi5(k'lk"). 
s s (5) 

Substituting Eqs. (3) and (5) into Eq. (2) gives 

Jd 3 k' eik"Xs(xj){G~(k'lk") - 03(k' - k")G6(k") 

- [2i/(27T)3]GtJ{k') J d3 k F(k', k)G~(k Ik")} = 0, (6) 

where 

Integrating by parts gives 

~ 
k2 - k'2 k" (k' k) 

F(k' ,k) = P 0 1. + 1. k' ..::. ~ 1. )A(k' - k), (7) 
k~ z z 

where 

A(k) = Jd2x1.expl-ik'Xs(x1.)J. (8) 

The surface term arising from the integration by parts 
has been neglected. This can be justified by noting that 
h(xJ can be multiplied by a spatial cutoff, such as 
exp(-a 2xf), and the field, when defined with respect to 
an appropriate set of test functions (representing a set 
of finite detectors), will approach a limit as a 2 ~ O. This 
limit is to be taken with the source and detector in the 
near field region associated with the cutoff function. 

The normal procedure to complete the transformation to 
k space would be to apply an inverse Fourier transform 
to (6). This cannot be done since (6) is only defined on 
the surface. However, if the quantity in the curly bra
ckets in (6) is taken to be zero, then (6) is satisfied. 
Thus, we get the integral equation 

G~(k' Ik") = 03(k' - k")G6(k") 

2i ( k 2 -k'2 k" (k' -k )) + __ G±(k') Jd3k P 0 1. + 1. 1. 1. 
(27T)3 a k~ k~ - k z 

x A(k' - k) GMk Ik"), (9) 

which is a sufficient condition that (6) be satisfied. 

The Fourier transform of the full Green's function 
GJ5{k' Ik") can be related to G§ (k' Ik") by Fourier trans
forming Eq. (1) and via (3) and (5). Following the same 
procedure used to derive Eq. (9) gives 

G~ (k' Ik") = (27T)30 3 (k' - k") Gzj (k") 

+ (27T)3G±(k') Jd3k ~ k" (k' - k) A(k' - k)G±(k Ik"). 
a (27T) 3 k' _ k s 

Z Z (10) 
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Clearly (6) does not uniquely imply (9). In fact, an ad
ditional function can be added to the right-hand side of 
(9). This function is arbitrary except for the condition 
that it must be orthogonal to eik·"s(xJ.) for all xJ.' We 
have chosen this function to be zero. If it is not as
sumed to be zero, then it can be shown that G!(k' Ik") 
is changed but GJ(k' Iklt) is not. This situation is ana
logous to the gauge transformations of electrodynamics. 
The basic formulation of the problem in momentum, or 
k, space is now complete. 

We will next consider an iterative series solution to 
Eq. (9). Let us define a new function D§ by the equa
tion 

G.§(k' Ik") = 03(k' - k")GMk") + D§(k' \k"). (11) 

An integral equation for D.§ is easily derived from (9) 
giving 

2i ~ k2-k'2 k"(k' -kll») D±(k' !k") = G±(k') __ P 0 J. + J. J. J. 

S 0 (2iT)3 k' k' - kIf 
Z Z Z 

x A(k' - k")Gt(k") 

2i ( k2 - k'2 k'· (k' - kif») + G±(k') J d3k --'- P 0 J. +.L .L L 

o (21T)3 k~ k~-k? 
x A(k' - k)D~(k Ik"). (12) 

This integral equation can be iterated to yield a series 
for D!. Examination of this series yields a set of dia
grammatic rules for the calculation of a general term 
in the series. These rules are shown in Fig. 2. The 
series for D's can be diagrammatically represented as 
shown in Fig.3. A similar series of diagrams can be 
written for Ds' It is easy to see that this series can be 
summed to reproduce the integral equation for D's as is 
indicated in Fig.4. The last equation is a diagrammatic 
representation of (12). It is also convenient to define the 
functions Db and DiJ by the equation 

Via (10), Db can be expressed in terms of G~ giving 

D±(k' Ik") = G±(k') jd3k ~ k' • (k' ~ 
D 0 (2iT)3 k'z k z 

x A(k' - k)G~(klk"). 

The full Green's function Gt (x' Ixtl
) can be calculated 

from these two equations and (11) once D~ is known. 

Actually, the Green's function is a solution more general 
than one usually needs. Often it is the case that the 
sources and detectors are located in regions sufficiently 
far above the surface that the cutoff surface modes have 
decayed enough that they can be neglected. The connec
tion between these solutions and the Green's function 
solutions is given by the reduction formula. The result 
is a scattering matrix for the surface which relates the 
plane wave decomposition of the scattered fields to the 
plane wave decomposition of the incident field 1/1 .(x) 
which satisfies the homogeneous Helmholtz equation. 

In order to discuss the reduction formula, let us rewrite 
the Green's function G» in a form which explicitly dis
plays the external free Green's functions evident in the 
expansion for Di>. This follows from the expansion for 
D~ and the last equation above. ThUS, we have 

Gh(X' IxfI) :=: G6(x' Xfl) 

+ (2iT)3 J d3x 1 d3x2 G5(x' x 1 )P±(x1 Ixz)Ge(x2 - x"), 
(13) 

where 

p±(X1!XZ) 

= J d3 k 1 d3k z eikl'Xl(ka - ky)DJk1 Ikz)(k& - k~)e-ik2·X2. 

The advantage of this form is that p is localized on the 
surface. 

The scattered or outgoing field 1/1 o(x), due to an incoming 
free field 1/1 j(x), can be found by observing that any in
coming free field can be constructed by situating the ap
propriate source distributions at z II = + 00. Following 
this line of reasoning it is easy to see that the outgoing 
field is given by 

1/1 o(x') = (211)3 J d3x 1 d3x 2 Go (x' 1Xl)P+(Xl Ix2 )1/1 j(x2 ), 

(14) 
The first term in (13) does not contribute to the scatter
ed field since it gives back the incident field and can be 
dropped. 

In order to reduce (14) further, let us rewrite Go in the 
form 

where 

k £ = + (ka - k1)1/2 

Substituting this into (14) and taking the observation 
point inside the region where the cutoff surface waves 
have damped out gives 

1/1 o(x') = J dZk~ e ik'.x' 'P o(k~), k ~ = + (k& - k~2)1/2, 
(15) 

where 

Decomposing the incident field into a plane wave expan
sion 

,I, (x lt
) - Jd2kfl eik",xua) (k") 

¥"i - . J.. 't'i.L' 

where 

k~ = - (k& - k:2)1/2, 

gives 

CPo(k~)::= J d2k: T+(k~lk:)'Pi(k:), 
where the scattering matrix T± is given by 

lim 
k'z~±(k~-k'.L2)112 

k;_ f(~-k'~2)112 
(iTl ik~) 

(16) 

(17) 

x (ka - k'2)D»(k' Ikfl)(ka - k"2). (18) 

This last equation can be put in a more convenient form 
by noticing that in the limits noted D'b can be replaced by 
D~. This gives 
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x (kil - k'2)D~(k' Ik")(ka - k"2). (19) 

Similarly for the complex conjugate field it follows that 

~b(x') = J d2k~ e-ik·.x·<Pb(k~), k~ = + (ka - k~2)1/2, 
(20) 

k~ =-(k5-k~2)1/2, 
(21) 

Let us now turn to the application of these results to 
scattering from random rough surfaces. 

III. RANDOM ROUGH SURFACES 

(22) 

Having considered scattering from a general surface in 
the preceding section, we will apply these results to 
the calculation of moments of Green's functions and 
moments of fields scattered from a random rough sur
face. The moments to be considered are 

and 

(~l/J o(X i)? l/J~(xJ)' 
We will assume that the moments can be calculated by 
averaging over an ensemble of surfaces characterized 
by a multivariate Gaussian height distribution. 

Looking back at the results of Sec. II we see that the 
above moments can be determined from the moments 
of the D§(k' Ik") functions, so we are led to consider the 
moments 

These are the basic quantities of interest. As before 
we will determine a set of diagrammatic rules for con
structing a general term in a series for these moments. 
From the rules derived in Sec. II we see that the sur
face height enters only through the function A(k), where 

The series for Dt and the series for products of Dt 
contain products of A functions. Thus, the moments of 
the Dt functions can be written in terms of a sum of 
terms each consisting of integrals over functions con
taining moments of the A function, (ITi A(k i). In order 
to discuss the properties of these moments, it is use
ful to note that they are just Fourier transforms in x.L 
of the characteristic functions of the joint probability 
distribution of heights. The n-point characteristic func
tion for the surface Fn is defined as 

Fn(k12, ... ,knz;xu"",xnJ =(exp(-iJ~ kjzh(Xj.L))' 

(24) 

For a multivariate Gaussian distribution in h with <Jz) = 
0, the n-point characteristic function is given by 6 
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Fn ({kz}n ; {X.L}n ) = exp(- t ~ kjzr(xj.L - X1JklZ) ' 
J,/-l 

(25) 

where {kz}n is used to denote the set k1 z' ... , kn z' and 

similarly {x .L}n the set x1.L' ... ,xn.L' The correlation 
function r(X.L) is defined as 

(26) 

It is a function of x1 .L - x 2.L because we assume that 
the ensemble of surfaces is invariant under translation 
in the x.L plane. 

An examination of the properties of the moments of A 
is now necessary. We will assume that r(X.L) vanishes 
as IX.LI ~Cl). This assumption has im,Portant implica
tions for the singularity structure in tk.L}n of (ITiA(ki)' 
These implications can be best exemplified by exam
ining the two-point moment of A explicitly. The two
point moment of A is given by 

(A(k 1 )A(k 2 ) = J d2X1.Ld2X 2.L exp[-i(k1 .L . x1 .L 

+ k2.L . X2.L) - ~r(O)(kr. + k~z) 

- k1zk2zr(xU - x2 )J. 

r; k2 ~ r; k2 k3 r" 
(r r ... r) + 2: (~ )1'. 

o 0 0 Perm V o· ! ) 

FIG. 5. Cluster expansion for moments ofA(k). The symbol 6 erm in-
dicates a sum over all different labelings of the diagrams. P 
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'" k2 k3 
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FIG.6. Cluster 
expansion for 
the lowest 
three moments 
of A(k). 

FIG. 7. Diagrammatic representation of the series for Ds and DO;. 
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This can be rewritten as 

(A(k 1 )A(k 2» 

= (2rr)2 exp[- tr(O)(kL + k~zn52(kl-L + k 2l.) 

x 1 (2rr)202(kl-L) + J d 2Yl-L e(-ik]l.·Y1l.) 

x [e-iklLk2zf(Yl.)_11\. 

The important point in the expression is that the se
cond term in the curly brackets is free of o-function 
singularities since 

e-k12k2zf(yl.)_1-----C> 0 
I Y l.1->oo • 

This separation of (A(k1 )A(k 2» into terms with dif
ferent singularity structure can be extended to the 
general function (O~ol A(k i». The result is the cluster 
expansion discussed in Appendix B. There it is shown 
that this separation is accomplished by letting 

(27) 

The notation 6{mi}M denotes a sum over all unordered 

M element sets {mJ m such that 6~1 mi = n, and 
6 denotes a sum over all different labelings,j,of lperm 
the unordered mi element sets {kj} mi with j = 1, ... ,n. 

The functions A are discussed in Appendix B. Equa
tion (27) can be ~~ry conveniently represented by the 
series of diagrams shown in Fig. 5. The first few dia
grams in the cluster expansion for (OA) are explicitly 
shown in Fig. 6. 

Since D§(k' Ik") can be expressed in terms of series in
volving integrals over products of A functions, we can 
use the cluster expansion for the expectation value of 
products of A functions to find a set of rules for generat
ing a general term in the series for (rrDs)' Let us recall 
from Sec. II the diagrammatic representation of Ds as 
shown in Fig. 7, where each Xk represents a factor of 
A(k) and also recall the similar representation for Ds' 
Combining these rules for D§ with the rules for the clus
ter expansion of (OJ A(kj » yields a set of rules for cal
culating a general term in the series for (OD). These 
rules are shown in Fig. 8. A more complete discussion 
of the combinatorial problem leading to the rules can be 
found in Ref. 3 by Frisch. 

An example of the application of these rules is shown in 
Fig.9 where the diagram series for (Di) is displayed. 

The mutual coherence function (1jJ o(x)1jJ~(x'» is a quantity 
of particular interest because of its close relationship to 
the scattered intensity, which is one of the most access
ible pieces of data experimentally. It can be related to 
averages of Ds functions through the reduction formula 
derived in the previous section. From Eqs. (16)-(22) of 
Sec. II it follows that 

< I/; 0 (x)l/;~ (x'» 

= Jd2kl.d2k~ei(k·X-k'·x')(cpo(kl.)cp~(k~», (28) 

where 

(cp 0 (k l. )cp~(k ~» 

J d2k i l.d2k;l.(r+(kl. Iki.L )T-(- k~ 1- k;l.» 

x CPi(kil.)cpi(k;l.) (29) 

and where 

(T+(kl. Ikil.)T-(- k'cl- k;) 

= lim , li~ I 
kz->+(kij-kVl/2 kiz->-(k o-k1l.)12 

k~->+(ka-k7)l12 kiz->-(kg-ki:r.)1/2 

x (rr2/kzk~)(k~ -k2)(k~ -k'2)(D;(klk i ) 

x Ds (- k' 1- k;»(k~ - k~)(k~ - k?). (30) 

Due to translational invariance in the x l. plane, a ° func
tion can be extracted from this last equation, that is, we 
can write 

(T+(k l. Ikil. )T-(- k~ 1- k;l.) 

= 02[(kl. -k~) - (kil. -k'il.» 

x F(t(kl. + k'c),kl. -k'c, t(kil. + kil.»' (31) 

These general expressions are somewhat complex. They 
are considerably simpler if the incident wave is a plane 
wave, a case which is also of practical interest. For this 
case 

CPi(kl.) = 02(kl. -kil.) 

and,thus, 

(CPo(kl.)CP6(k~» = (T+(kl.lkil.)r-(-k~l-ki.L» 

= 02(kl. -k~)I(kl.,kil.)' (32) 

where I is the intensity scattered in the k l. direction due 
to a plane wave incident from the kil. direction. USing 
the rules for averages of products of D§ functions and 
Eqs. (30) and (32), we can write down the lowest-order 
coherent and incoherent scattered intensities. 

k 
exp{-tr(Olkn - ... - -

k 
G+(k) = (k2- k2 + ie )-1 --+-- - o 0 

k 
G-(k) = (k'Lk'L ierl --- - o 0 

;; k 2; (k6-;;12 k1'k1) r---,...+ - (2 )3 P -k-' - + -k"-
t " z z 

~'=~-k 
k 
t 
'" - (2,,)2 82 (k1) 

Ii 
t 
¢ - (2,,)282 (~l +k21)R2(~,r2) • k2 

t~ 2 - - ____ 

i<2---¢ - (2,,) 82 (kll +k21 +k31) R3 (kl,k2.k3) 
+r3 

etc 
FIG. 8. Diagram rules for (llDs)' Each diagram in the series has equal 
weight and is constructed by multiplying the indicated factors associ
ated with the lines and vertices of the diagrams. Integration over the 
three momenta k associated with internal Go lines completes the con
struction of the term in the series associated with the diagram. The 
function Rn is discussed in Appendix B. 

k' k" 
-...- + ,. 

6 

... ., .... ,. ,. 
6 6 

FIG. 9. Diagram series for (Ds)' 

+ 
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The lowest-order coherent, or specularly-scattered, in
tensity is given by the diagram shown in Fig. 10, which 
on evaluation gives 

The ° function indicates that the scattering is specular. 
The normalization of I follows from this expression 
since r(o) = 0 corresponds to mirror reflection. 

Similarly, the lowest-order, incoherently-scattered in
tensity is given by the diagram shown in Fig. 11, which 
on evaluation gives 

k 

t 
• 
? 
t 
j 

T 
t 
6 

T 
t 
6 

"' II 'd 

9 
! 

kj 

• 

, , •• " » 

FIG. 10. Diagram for the lowest-order 
specular scattering. 

FIG. II. Diagram for the lowest-order 
incoherent scattering. 

FIG. 12. Examples of connected 
diagrams contributing to (Di). 

FIG. 13. Examples of connected diagram 
contributing to (DsDii). 
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where 

k z = + (kii - k~)1/2, k iz = - (kii - kr.J1/ 2. 

These results correspond to the usual results based on 
the Kirchhoff approximation.1 

We will now rewrite the series for the first two mo
ments of G in terms of linear integral equations by par
tially summing their series. There are basically two 
reasons for doing this. First, it considerably reduces 
the number of diagrams that must be individually con
sidered when constructing approximate solutions and 
when performing formal manipulations, and second, it 
probably improves the convergence of the series. The 
reasons for this latter conjecture will be mentioned 
later. To facilitate this development, let us categorize 
the diagrams into classes. We will call a diagram dis
connected if it can be broken into two parts, not connec
ted to each other by any lines, by removing a Go and/or 
a Go line. A diagram, which is not disconnected, is con
nected. Some examples of connected diagrams in the 
expansion of (D) are shown in Fig. 12. Similarly, Fig. 13 
shows some connected diagrams for (IYD-). 

Examination of the series for (Di (k I k 1» reveals that 
one can write 

(Dt (k Ik1» = Pi(k Ik1)Gt(k1) + J d 3k 2P 1 (k Ik 2)(Dt(k 2 Ik 1», 

(33) 

where Pi(k Ik1)Gb(k1) is equal to the sum of the connec
ted diagrams contained in the series for (Dt (k I k 1»· 
Equation (33) can be reduced to a one-dimensional inte
gral equation. Because of translational invariance, a ° 
function can be factored out of Pl' Therefore, we can 
write 

(34) 

and 
(Di(k Ik'» = Gt(kz):D±(kz Ik~)Gt(k~)02(k.L - k~). (35) 

Combining (33), (34), and (35) gives 

:l)±(kz I k~) = CPi(kz I k~) 
+ J dk~CPi(kz I k~)Gt(k~):l)±(k~ I k~). (36) 

For convenience the k.L dependence of the above quanti
ties has not been explicitly noted. The integral equation 
for (G!) is also easily found from (33). It follows from 
Eq. (11) that 

(Gi (k Ik 1» = 03(k - k 1)GIl(k1) + (D! (k Ik1»· 

The resulting integral equation is 

(G!(klk1» = 03(k -k1)Gb(k 1) 

+ Jd3k2Pi(klk2)(Ggo(k2Ikl»' (37) 

Similarly, examination of the series for (Dslklk') 
D'S (k1Ik]) reveals that one can write 

(Ds(k Ik1)Ds(k' Ik~» = (Ds(k Ik1»(Ds(k' Ik~» 

+ J d 3 k 2P 2(k,k' Ik2,k~)(Ds(k2Ik'»Go(k~) 

+ J d3k~P2(k,k' Ik1,k~)Go(k1)(Ds(k~ Ik~» 

+ P 2(k,k' Ik1,k~)Go(k1)GO(k~) (38) 

+ J d3k2d3k~P 2(k,k' Ik2,k~)(Ds(k Ik1)Ds(k' Ik;», 
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where 

is equal to the sum of connected graphs contained in the 
series for 

Equation (38) can be rewritten using (11) to give an inte
gral equation for (Gs(k Ik')Gs(kIlk;». The result is 

(Gs(k Ik')Gs(kIlk;» = (G;(k I k'»(Gs(kIlk~» 

+ J d3k2d3k~P 2(k,k' Ik2,k~)(G;(k2Ikl)Gs(k2Ik~». (39) 

Equations (37) and (39) are the equivalents of Dyson's 
equation and the Bethe-Salpeter equation for a rough 
surface. Earlier we mentioned that the sequence of ap
proximations to \Di> and (D;Ds> generated by a sequence 
of finite series approximations to PI and P 2 probably 
are more convergent than the sequence for \Dg> and 
\Df,Ds> formed directly. Our reasoning is: This partial 
summation is necessary for the case of a random medi
um with homogeneous statistics, in order to remove se
cular terms. The introduction of inhomogeneous statis
tics removes the secular terms and the need for partial 
summation; but a residual effect must still be present. 
It is probably in the form of poor convergence. The 
similarity of this problem to rough surface scattering 
led to the conjecture made earlier. 

As an example of what can be done with these integral 
equations, let us consider the lowest-order approxima
tion to PI shown in Fig. 14. On evaluation this diagram 
gives 

i kn - k 2 

(Il±(klk') =1fP k 1. exp[- ~r(O)(kz - k~)2]. (40) 
z 

We will call this the average surface approximation 
since the correlation length does not appear. This is 
what one would expect if the surface,in some sense, 
were averaged over translations in the xl. plane before 
scattering. It is the logical extension of the lowest-order 
result for coherent scattering from a rough surface. 
Combining (40) with (36) and letting 

:l)±(k Ik,)=~pkn-klT±(k Ik') 
z z 1T k z z z 

(41) 

gi ves an integral equation for T±: 

T±(k z I k~) = exp[-1r(0)(kz - k~)2] 

+ ~ J dk~ exp[- 1r(0)(k - kU)2] (p ~) 
1T z z \ k U 

k~ -kl 
x -----"''-----==---- (42) 

The corresponding scattered intensity follows from (30) 
(32),(35),and (41). We have ' 

k k' 
• T • 

t 
6 

(43) 

FIG. 14. Lowest-order approximation to Pi. 

where 

As the roughness of the surface vanishes or as r(o) --7 0 
the solution of (42) should reduce to mirror reflection. 

Observing that in this limit the right-hand side of (42) 
is independent of k z and that the kernel of (42) is anti
symmetric, one can immediately conclude that 

thus showing that mirror reflection is obtained. 

IV. CONCLUDING REMARKS 

A series solution to the moments of fields scattered 
from random rough surfaces has been developed. While 
explicit calculation of high-order terms in these series 
is probably impractical, the existence of a formally sim
ple systematic procedure is very useful. For example, 
the series can be partially summed to construct integral 
equations for moments of Green's functions, two parti
c~larly interesting examples of which we have briefly 
dIscussed. These integral equations can be approximated 
in various ways depending on the particular problem 
under consideration. This latter area is one where 
good experimental data based on scattering from care
fully controlled surfaces would be an aid in constructing 
useful approximations. 
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APPENDIX A 

In order to derive Eqs. (1)-(4), let us start with the con
tinuous Green's function G c which satisfies the inhomo
geneous Helmholtz equation 

with the boundary condition that its normal derivative 
vanish on the surface given by z = h(xl.)' The function 
G c is regular everywhere except at x = x'. The free 
Green's function Go satisfies the same differential equa
tion ~~ Gc but it has,pure outgoing or incoming boundary 
condItIOns as Ix - x 1--> 00. Applying Green's theorem 
gives 

v . [Go(xlx')'VGc(xlxU) - Gc(xlxU)'VGo(xlx')] 

= Go(xlx')o3(x - XU) - Gc (xlxU)o3(x - x'). (AI) 

Multiplying (AI) by the unit step function e[z -- h(xl.)] 

jI, 
8(z) =1 

0, 

z > 0, 

z < 0, 

and integrating over all space gives 

Gc(x' ixU)8[z' - h(x~)] = Go(x' - x U)8(zU - h(x'~» 

+ J d3x(i~ --'V l.h(xl.») . [Go(X' - x)'VGc(xlxU) 

- Gc(xixU)'VGo(X' - x)]o(z - h(xJ). (A2) 
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The last term in (A2) has been integrated by parts. Ap
plying the boundary condition 

[t.- \7l.h(xl.)] . \7Gc(xs (Xl.) IX") = 0, 

where 

xs(x.l.) ;:::x.L + l.h(x.L) 

gives 

GD(x'lx") == G o(x' - x") 

+ f d2Xl.(i. -\7h(x.L) . {\7'Go[x' -xs(X.L)]} 

x Gc(xs(X.L) Ix"), 

where 

(A3) 

Also, we have assumed that z" > h(x:;) , that is, the 
source is above the plane. In order to facilitate taking 
the surface limit of (A3) we will rewrite the kernel of 
(A3). Now 

Go(x) ;::: (21Tt3 J d3k e
ik

'
x 

;::: Go(x) + Gii*(x) 
k5 - k 2 + iE 

carrying out the k. integration gives (€ ~ 0) 

( ) 2 J 
exp{ik.L . x.L + i(ka - k1)lf2lz I} 

G x = (21Tt d 2k • 
o .L 2i(k5 - kV1/2 

Thus, 

a .Go(x) 

= (21r)-2 fd2kl.exp[ikl. ·x.L +i(k5-k1)1/2Izl]E'(Z), 

(A4) 
where 

j + 1, 
€'(z) :;.:: t-.!. 

2' 

z > 0, 

z < O. 

Equation (A4) has a singularity at z = 0 which can be 
separated off in the following way; 

c.Go(x) = (21r)-2 J d2kl. exp(ikl. . x.J 

x (exp[i(k5 -ki)1/2 Izl}-1)E'(z) 

+ 02(X.L )€'(z). 

Substituting this into (A3) gives 

GD(x'lx") = Go(x' -x") + Gc(xs(x~)lx")E[z' -h(x'l.)) 

+ Jd2X l.(f. -\7h(xl.»· Go(x'-xs(X.L»Gc(xs(x) Ix"), 

where 
(A5) 

eik.'x (k2 -k2 ) 
Go(x) ;::: i(21r)-3 J d3k . P 0 l. tz + k.L 

k8 - k 2 + Z€ k z • 

Since we are considering single-valued surfaces, we can 
let x' approach the surface from above and combine the 
second term on the right-hand Side of (A5) with the left 
giving 

Gs(xs(x~)lx") == (21r)-3GO[xs(x~) -x"l 

+ 2 J d 2xl.<t. -\7 .Lh(X.L» . Go[xs(x'.L) -xs (X.L>1 

x Gs(xs(Xl.) Ix"), 
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(AB) 

where 

2(21r)3Gs(xs(x~)lx")= lim GD(x'lx"). 
z':;1z(xj) 

Rewriting (A3) in terms of Gs gives 

GD(x' IX") = Go(x' - x") 

+ 2(21r)3 f d2Xl.[f. -\7.Lh(X.L)] . {\7'G o[x' -xs(Xl.»)} 

x Gs(xs(X.l.) Ix"). 

This equation and Eq. (A6) are the desired relations. 

APPENDIX B 
Let us define an irreducible characteristic function 
Kn{{k z' xJn) by 3.7 

n M 
Fn({k.,x.l.}n):::: ~ "B "B IT Km.({kj.,xjJm.), 

jperm M=1 {mi}M i~l' , 
(B1) 

where "B{mi}M denote a sum over all unordered M ele

ment sets {mJ
M 

such that "Bi'!l mi = nand "Bjperlll de

notes a sum over all different labelings,j, of the un
ordered sets {kjz,xj.l.}m. with j = 1, •.. ,no Equation 
(Bl) can be solved recu;sively for Kn({k.,xJn). We will 
now show by induction that for n > 1 these irreducible 
characteristic functions have the property that they va
nish as any Xl. in the set is taken to be distant from any 
of the other members of the set. 

Let us first rewrite (B1) in a more suitable form 

Kn({k.,xJn) = Fn({kz,X.l.t) 
(B2) 

From Eq. (25) it follows that 

Fn ({k z ,xJn) {I XL-XrO':"" F m({k~ ,x~} m)Fn-m),({k~, x:;Jn-m) 
(B3) 

where {Ix~ - x:l} ~ (i) means that Ix~ x:I-) (i) for all 
x~ in the set { } m and xl! in the set {}n-m' Assume that 

1 < m < n. 

From this and Eqs. (B1) and (B2) it follows that 

(n> 1) 

and thus from (Bt) 

This concludes the proof. 

The first three irreducible characteristic functions are 
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K 1(1) = F 1 (l), 

K 2(1,2) = F 2(1,2) - K1 (1)K1 (2), 

K 3 (1 , 2 , 3) = F 3 (1 , 2, 3) - K 2 (1 , 2)K 1 (3) - K 2 (1, 3)K 1 (2) 

-K2(2,3)K1(l) -K1(1)K1(2)K1(3), 

where we have used the condensed notation 

K 1(l) = K 1 (k1z 'xU )' 

K 2(1,2) =K2(k1z,X1.L;k2Z'x2J.)' 

etc. 

Since the Kn functions are well behaved as the points 
are separated, we can now complete the program of se
parating the singularity structures of (IT j A(k). We will 
use a new set of irreducible functions An' which are the 
Fourier transforms with respect to xl. of the irreduc
ible characteristic functions, i.e., 

A n (k 1 ,··· ,kn) = j d 2x 1 1.·· ·d2xn l. exp (- i t kjl. • Xj.L\ 
J -1 "} 

X Kn(k1z,X11.;···;knz'Xn1.)' (B4) 

From Eqs.(23),(24),(27),and (B4) we get 

This is the desired cluster expansion. Writing out (B5) 
for n = 1,2,3 gives 

(A(I) =A 1(l), 

(A(I)A(2) = A 1 (1)A 1 (2) + A 2(1,2), 

(A(I)A(2)A(3) =A 1(I)A 1(2)A 1(3) +A 2(1,2)A1(3) 

+ A 2(1, 3)A 1(2) + A 2(2, 3)Al(1) + A3(1, 2, 3), 

where the condensed notation 

A(kl) = A(I), etc. 

has been used. 

We will now explicitly display the o-function singularity 
in An' Translational invariance in the x.L plane of the 
ensemble of surfaces implies 

I P. Beckman and A. Spiaichino, 77,C scattering o/declrumagllelic waves frum 
r<Jugh slir(aces (Pergamun, New York, 1 %.' l. and references therein. 

'C'.l:ckaCl,J. Acuust. Soc. Am. 25, 566(1953). 
J U. !'risch, "Wave propagation in random media," in Pro/Jabilislic /IIelhods ill 

applied lIIalhemalits, edited by A. T. Bharucha-Reid (Academic, New York, 
I '!6H), and rderences therein 

where Y.L is arbitrary. This invariance can be used to 
transform to a new set of coordinates {yJn where one 
integration in (30) can be performed. Let 

i < n, 

The Jacobian of this transformation is unity. Using this 
transformation and taking Y 1. = Yn 1. gives 

An({k}n) = jd2Yu···d2Ynl.exP[-i 't1

k j l. ·Yj1. 
)=1 

-{~kjl.) • Ynl.] Kn(k1z,xU;···;knz'0). 

The Yn 1. integration can be performed giving 

An ({k} n) = (21T)202 (~kj.L) j d 2yu" • d2Yn1.°2(Yn 1.) 

x exp(-i t kjl.· Yjl.) Kn({kz,Yl.}n)· 
)=1 

From the characteristic function given in Eq. (25), we 
see that all of the An ({k}n) have a factor of exp(- lr(o) x 

~=1 kfz) that can be extracted. With this in mind we will 
define the functions Rn by 

It is now easy to write out the first three expressions for 
Rn explicitly 

R 1 (k) = 1, 

R 2(k1,k2) = j d2y l.e- ikZ 1.·Y 1. {exp[-r(Y.L)k1z k2z ]-I}, 

R (k k k) - jd2y d2y e-i(k11.·Y11.+kZl.·YZl.) 
3 l' 2' 3 - 11. 21. 

X {exp[- r(yu - Y21.)k 1z k 2z - r(Yu)k1z k3z 
- r(Y21.)k2z k3z ]- exp[- r(yl1. - Y21.)k1z k 2z 1 
- exp[- r(Yl1.)k1z k3z ]- exp[- r(Y21.)k 2z k3z ] + 2}. 

It is interesting to note that if we let r(Xl.) = r(O)C(xJ.l, 
where C(O) = 1, and expand Rn in a Taylor series in 
r(0), then the lowest power of r(O) appearing in the 
series is r(o)n-i. 

40. D. Kellogg, j,iJUlldalio/lS o(poleilliallheon' (Dover, Nev. York, i '15., l. 
5 P. M. Morse and II. Feshbach, Melhods of Ihmrellcal physics (McGraw-HilI. 

New York. 1953). 
6 M. J. Beran, Sialislical coillilluum Ihcories (Inlerscience, New YO] k, 196k l. 
7 K. Huang, Sialislicailllecirallics (Wiley, New YO] k, 11)(,3 J, pp. 305-06. . 
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In the asymptotic limit of weak inhomogeneities and long times or distances, we obtain a system of kinetic equations 
governing the power transfer among the modes of oscillation of certain stochastic dynamical systems. We include applications 
to coupled oscillators, waveguides, beams, the quantized motion of a particle in a random potential, and the Klein-Gordon 
equation with random plasma frequency. 

1. INTRODUCTION 

The author and J. B. Keller employed previouslyl a 
method for computing moments of the solution of sto
chastic equations in a certain asymptotic limit. Subse
quently, this method was justified for a large class of 
problems. 2,3 

We present here a kinetic theory for coupled systems of 
stochastic equations by employing the above method. 1 
Specifically, we consider a general oscillatory system 
and find equations for the mean of the modulus square 
of the amplitudes. This problem is well known in statis
tical mechanics and the resulting kinetic equations are 
called master equations. 4 - 6 Our results, however, follow 
rigorously from previous results l - 3 and are obtained in 
a natural manner, without recourse to elaborate pertur
bation schemes, in the asymptotic limit of long times (or 
distances) and weak fluctuations. 

In Sec. 2 we formulate the problem under consideration 
for a general class of coupled stochastic equations. In 
Sec.3 we apply the above method l - 3 to obtain the kinetic 
equations. 

In Sec. 4 we apply the results of Sec. 3 to wave propaga
tion in a waveguide with random inhomogeneities and to 
Gaussian beams through random media. The same equa
tions [(4.10), (4.12), and (4.13)] have obViOUS signifi
cance for quantum mechanical problems. They are mas
ter equations for the probability amplitudes first obtain
ed by Pauli. 7 In connection with the waveguide problem, 
kinetic equations were first obtained in a heuristic man
ner by Marcuse. 8,9 The same problem has been treated 
by Young and Rowe 10 and Morrison and McKenna. 11 The 
latter employed the above method1 as we do here. 

In Sec. 5 we apply the results of Sec. 3 to a system of 
coupled harmonic oscillators. The single random har
monic oscillator has been treated by several authors be
ginning with Stratonovich. 12 Our results here generalize 
the results of Stratonovich and the author and Keller'! 

In Sec. 6 we consider the Schrodinger equation for a par
ticle in a random potential. We obtain kinetic or trans
port equations for the average probability denSity of the 
particle in momentum space in the usual asymptotic 
limit. 

In Sec. 7 we consider the Klein-Gordon equation with 
random plasma frequency. We obtain a transport equa
tion for the average field energy density in wavenumber 
space. The results of Secs. 6 and 7 are the continuous or 
infinite dimensional analogs of the results of Secs. 4 and 
5, respectively. Naturally the application of the theory2.3 
is somewhat more involved here. We shall concentrate, 
however, on obtaining and interpreting the transport 
equations. In Sees. 6 and 7 we also omit details of some 
derivations since they are simple generalizations of 
those of previous sections. 

2. FORMULATION OF THE PROBLEM 

Let v(t) be a complex n-vector function of t satisfying 
the system of equations 

d:?) = (ik + EX(t»V(t), t ~ 0, v(o) uo, i = v'=l, 
(2. 1) 

k j real and distinct. 

Here x(t) = (xp (t» denotes a real or complex matrix 
valued stochasfic process and E is a small parameter. 
We assume that the processes Xpq (t) have mean zero 

E{Xpq(t)} = 0, P,q = 1, ... ,n, (2.2) 

and that they are wide sense stationary 

(2.3) 

Equations (2. 1) define the process v(t). We wish to study 
the statistical properties of this process; in particular, 
we are interested in the quantities 

P = 1, ... ,no (2.4) 

Here * stands for complex conjugate. In many problems, 
as we will see in Secs. 4 and 5, the quantities (2. 4) re
present power and are thus called power amplitudes. 
The main result of Sec. 3 is that in the limit t --> r:tJ, 

E --> 0, E 2 t = const, the quantities (2.4) satisfy a system 
of coupled equations which we call the kinetic equations 
because of their form. 

Let us now transform (2.1) into a more convenient form. 
First we introduce the slowly varying amplitudes u(t) by 

v(t) = eiktu(t). (2.5) 

From (2.5) and (2. 1) it follows that 

u(o) = uo. (2.6) 

Clearly the power amplitudes are not affected by the 
transformation (2.5). Next we introduce the tensor pro
duct1 of u and u*: 

y (t) = u(t) 0 u*(t). (2.7) 

By differentiating y and using (2.6), we obtain the equa
tions 

~ - -dt = E(X(t) 0 1 + 10 x*(t))y == EV(t)y, 

y(O) = Uo 0 ut, I = identity matrix. (2. 8) 

By using indices and the summation convention, (2. 8) 
takes the form 
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y(O) = UopU~p', 

YPP' = up u~" (2. 9) 

In (2.9) Opq denotes the Kronecker delta function. 

Equations (2.8) or (2.9) are set up appropriately now for 
the application of the method referred to in the Introduc
tion. l 

3. THE KINETIC EQUATIONS 

Let rand y (E) (r) be defined by 

r = E2t, y(El (r) = y(r/E2), y as in (2.7). 

According to previous results l - 3 

w(r) = lim E{y(E) (r)}, 0 ~ r ~ ro, 
E-->O 

(3.1) 

(3.2) 

exists and the vector w(r) satisfies the system of equa
tions 

dw(r) _ V ( ) ( ) _ * -----;r:r- - w r , w 0 - Uo lSi uo , 

V = lim -t1 t f E{V(s)V(a)}dads. (3.3) 
t-->oo 0 0 

The precise hypotheses in the theory2,3 can be satisfied 
easily here since V(t) of (2. 8) is finite dimensional. Of 
course, the process x(t) must also satisfy certain hypo
theses. For our purposes here it suffices to assume that 

1000 

aRpq,p'q' (a)da < CXJ, p,q,P',q' = 1, ... ,n. (3.4) 

We now proceed with the applications of this result. 

From (2. 8) we see that 

V(s)V(a) = (x(s) lSi I + I lSi x*(s)(x(a) lSi I + I lSi ,;*(a)) 

= x(s)x(a) lSi I + I lSi x*(s)x*(a) + x(s) lSi x*(a) 

+ x(a) lSi x*(s). (3.5) 

To find the form of V, we insert (3. 5) into (3.3) and com
pute the limit for each term in (3.5) separately. We have 

( lim -t1 t f E{x(s)x(a) lSi l}dS\pq,p'q' 
t-->oo 0 0 'J 

. 1 It l s {i(k -k )s = 0p'q' 11m -t E e r p xpr(s) 
t _00 0 0 

x ei(kq-kr)o ()}d ds x rq a a 

_ 0 li ~ It l s et(kr-kp)s+i(kq-kr ) (s-o) 
- p'q' t~ too 

x Rpr.rq(a)dads 

1"" -;(k - k )0 
= 0p'q,Opq 0 e q r Rpr,rq(a)da. (3.6) 

In (3.6) we have used the summation convention, (3.4), 
and the fact that ku k2' ... ,kn are distinct real numbers. 
A calculation identical to the above yields 

(!~n.!, f lot 10" E{l lSi x*(s)x*(a)}dadS)pq,p'q' 

o 0 100 i(k ,-kr,)OR*'* ()d = pq p'q' 0 e q p'r', r'q' a a. (3.7) 

Here we have introduced the notation 

We shall also need the notation 

Rt'q ,p'q' (a) = E{x;q (a + t)x P' q' (t)}, 

R1q ,p'q' (a) = E{x pq (a + t)xh' (t)}. 

(3.8) 

(3.9) 

Before proceeding with the remaining computations for 
V we observe the following. Our principal interest lies 
not in the full tensor 

(3.10) 

but rather in the "diagonal" part, 

(3.11) 

In general, the W P' which are the limits of (2.4), do not 
satisfy a closed system of equations. For the particular 
system under consideration, however, they do satisfy a 
closed system. We now show this remarkable fact. 

Let us continue with the computation of the limit V. We 
have 

(~~~ i lot 10" E{X(s) lSi x*(a)}dads)pq,p,q, 

= lim i lot los E{ei(kq-kp)SXpq(S) 

x e-;(kq,-kp')Ox;'q,(a)}dads 

= lim .! It l s ei(kq-kp)se-i(kq,-kp')(S-O) 
too 

x Rp*q,p'q' (a) dads. (3.12) 

From the above remarks it follows that if the condition 
P = P' implies that (3.12) is zero unless q = q', then, in 
view of (3.6), (3. 7), the claim of the preceding paragraph 
follows. Now it is easy to see that in fact when P = P', 

(lim f lot 10" E{X(s) lSi x*(a)}dadS)pq,pq' 
t-->oo 

- 0 100 i(kq,-kp)OR'* ()d - qq' 0 e pq,pq' a a. (3.13) 

An identical calculation yields, when P = P', 

(~~~ f lot 10" E{x(a) lSi X*(S)}dadS)pq,pq' 

- 0 100 -i(kq-kp)OR*' ()d - qq' 0 e pq',pq a a. (3.14) 

On collecting our formulas above, we obtain the main 
result of this section, the kinetic equations for the 
asymptotic limit of the mean power amplitudes Wp(r): 

dW n 

d/ = 6 QpqWq, 
q=l 

(3. 15) 

(

rOO -i(k -k )0 
Qpq = Opq J

o 
e q r Rpr,rq(a)da 

+ roo ei(kq-kr)oR*'* ()d) Jo pr,rq a a 

+ (00 ei(kq-kp)oR ,* (a)da 
Jo pq,pq 

+ {x: e-i(kq-kp)oR;~,pq(a)da (3. 16) 
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We may also obtain kinetic equations for the off diagonal 
terms of the tensor w by completing the calculation of V. 
However, since they decouple from the diagonal, they 
will not concern us here. 

4. APPLICATION TO WAVEGUIDES AND BEAMS 

Our first application concerns mode coupling in a wave
guide with random irregularities. The problem is as 
follows. 

Let u(x,y,z) denote the time harmonic complex field 
satisfying the boundary value problem 

-00 < x < 00, 

u(x,y,z)=O 

y,z EO:D CR2, 

for (y, z) EO o:D. (4. 1) 

Here k is the free space wavenumber, n(x,y,z) is the 
index of refraction, and o:D denotes the boundary of the 
region:D. We shall assume that n2 (x,y,z) is a stationary 
random field that deviates little from its mean value. 
Then we may expand the field in a series using the 
eigenfunctions of the cross section 1) : 

(Oyy + ozz)hn = - A;hn' n = 1,2, ... , 

h n (y, z) = 0, (y, z) EO o:D, 

(hn,hm) = f hn(y,z)hm(y,z)dydz = 0nm' (4.2) 

The ensuing system of ordinary differential equations 
for the amplitudes of the modes, Le., the coefficients in 
the expansion as functions of x, cannot be treated by the 
method of Sec. 3 because problem (4.1) is not an initial 
value problem. The full analysis of this system of equa
tions requires special considerations and is treated 
elsewhere. 13 

To study (4.1) by the methods of Sec. 3, we resort to the 
forward scattering or parabolic approximation. We omit 
details on the validity of this approximation and describe 
it as follows. We write U in the form 

u(x,y,z) = eikxv(x,y,z), (4.3) 

insert (4.3) in (4.1), and neglect 0xx v to obtain 

(4.4) 

On scaling the transverse variables, y, z by the factor 
fk and assuming that 

n 2 - 1 = (E:!k)Il(x, y, z), 

Il a stationary, zero mean random field, (4.5) 

we arrive formally at an initial value problem for v: 

2ioxv + (Oyy + ozz)v + E:IlV = 0, x> 0, 

(y, z) EO :D, v(x, y, z) = 0, (y,z) EO o:D, 

v(O,y,z) = vo(y,z) given. (4.6) 

Now we expand the solution of (4.6) using the eigenfunc
tions (4.2). To conform with the notation of Sec. 3, we 
use t instead of x and set 

00 

v(t,y,z) = ~ v,,(t)h,,(Y,z). (4.7) 
n~l 
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Upon inserting (4.7) into (4.6) and using (4.2), we obtain 
the following system of equations for vp(t): 

dv p. 00. 

(If = zkp + E: L) lllpq(t)Vq, t 2: 0, 
q~l 

vp(O), given, p = 1,2,' ". (4.8) 

Here we have the notation 

kp =- ~A~, Ilpq (t) = ~ f'JJ Il(t,y,z)hq(y,z)h p(y,z)dydz. 
(4.9) 

Note that the matrix Il(t) = (Ilpq (t» is real and sym
metric. Since Il(t,y,z) is a random field, the matrix Il(t) 
is a process whose statistics follow from those of 
Il( t, y, z). It is convenient to also make the following 
approximation. We truncate the system (4.8) to the 
first n equations and write 

x(t) = i(llpq(t)), 

p, q = 1,2, ... , n, 

~~ = (ik + E:x(t»v, v(O) = Uo given. (4. 10) 

We have thus a problem of the form (2.1). Incidentally, 
the truncation above is not necessary (the theory2,3 can 
handle infinite-dimensional systems). The results, how
ever, are in better accord with (4.1), where for given k 
only finitely many modes propagate. 

The kinetic equations (3.15) for the mean power ampli
tudes, 

Wp(T) = lim E{[ Vp(T!E: 2)[2}, 
E~O 

(4.11) 

become here 

(4.12) 

In (4.13) we have used the form of the matrix x(t) as 
defined in (4.10). From (4.12), (4.13) it follows that 

Qpq = Qqp' 

and that 
n 

.0 Wp(T) = const. 
pol 

The conservation equation (4.15) is in accord with 
n 

6 [v p (t)[2 = const, 
p~l 

which follows from (4.10). Note also that Q pq 2: 0, 

(4.14) 

(4.15) 

(4. 16) 

P '" q, since Q pq is a cosine transform of a correlation 
function. 

Equations (4. 12) are the kinetic equations for the mean 
power amplitudes in the asymptotic limit E: -) 0, t -) 00, 

E: 2 f = T. They are the main result of this section. 

If we take the constant in (4.15) equal to 1, then we may 
interpret the W p(T) as probabilities and (4. It) as a Kol-
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mogorov equation14 for a continuous time Markov chain. 
The Markov chain can be thought of as governing the 
mechanism of power transfer among the modes. The 
quantity 

a = max{ - Qp}} , (4. 17) 
p 

is the largest expected distance (t, T are length para
meters) between transitions of the chain. Thus when 
()I « T, then, Wp(T) is approximated well by the equili
bri~ solution of (4.13), 

Wp = lin, p = 1,2, ... ,n. (4. 18) 

We have arrived at an equipartition law for the mean 
power amplitudes under the approximations and assump
tions made above. This result has been observed in 
numerical simulations of a simple model by Marcuse. 9 

The application of the above considerations to Gaussian 
beams15 is immediate. We merely have to change the 
eigenfunctions (4.2). The transverse variables y, z, now 
vary over R2, but the index of refraction is given by 

n2(t,y,Z) = 1- (y2 + z2)[1 + (Elk)J-L(t,y,z»). (4. 19) 

The eigenfunctions are now Hermite functions in two 
variables and the spectrum remains discrete. The 
orthonormality relation in (4.2) still holds if we define 
the inner product of eigenfunctions appropriately. For 
more details on the physical problem we refer to 
Arnaud15 and the recent work of the author, McLaughlin, 
and Burridge. I 6 

5. APPLICATION TO RANDOMLY COUPLED 
OSCILLATORS 

In this section we shall apply the results of Section 3 to 
the following problem. Let z(t) be a real n-vector func
tion satisfying the equations 

d
2
z(t) + (k2 + Eji(t»Z(t) = 0, 

dt 2 

dz(O) • 
z(O) = zO' {If" = zo, k 2 = diag (ky, .•. ,k~). 

(5.1) 

In (5.1) we assu~e that kl' k 2 , • .• , k n are real positive 
and distinct and J-L(t) is a real symmetric n x n matrix 
valued process, stationary and with zero mean. We in
troduce new dependent variables A(t) and B(t) by the 
relations 

z(t) = k-I/2(eiktA(t) + e-iktB(t», 

d:?) :::: ikl/2(eiktA(t) _ e-iktB(t». (5.2) 

Upon using these relations and (5.1), we obtain the fol
lOwing system of equations for the n-vector valued pro
cesses A(t) and B(t): 

~(:A(t») = iE (e- ikl 

dt B(t) 2 0 

(

e ikt 
)( 

o 

f.L(t») 
- J-L(t) 

(5.3) 

Note that J.l(t) is a real symmetric n x n matrix valued 
process. Also, from (5.3) we find that 

n 

:E (IAp(t)12 - IBp(t) I 2) = const. 
p~l 

(5.4) 

This conservation law is markedly different from (4. 16). 
It can be used, however, to obtain a detailed analysis of 
the one-dimensional waveguide problem, without the 
parabolic approximation, where the equations (5. 1) 
arise. This has been carried out elsewhere.1 3 When the 
problem (5. 1) concerns a mechanical or other system of 
oscillators then the quantities 

(5.5) 

are of interest, because they represent the instantaneous 
energy of each oscillator. However, the sum of the 
energies (5. 5) is not conserved and this will appear ex
plicitly in the kinetic equation we now derive. 

In order to use the results of Sec. 3 we introduce the fol
lowing notation. Let J be the n x 11 matrix, 

0 .. ·10 
J= l

o ... 0 IJ 
... , 

10'''0 

and let 

u-n + 1 

Then we may rewrite (5.3) in the form 

(

JeiktJ 0 ) 
e iKt = , 

o C ikt 

. ( JJ-LJ 
x(t) :::: i 

- J-LJ 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

Note that the index in the vectors and matrices runs now 
as follows: - n, - (n - 1), ... , - 1,1, ... ,no Equations 
(5.8) are indeed in the form (2.6), and so we can apply 
the results (3.15), (3. 16) directly. Thus we obtain 
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n 

Qp,q = Opq :E t f'" [cos(kq + kr)a r=l 0 
- cos(kq - kr)a]Ppr,rp(a)da 

+ t Iaoc[COS(kq - kp)a]ppq,pq(a)da, P,q > 0, 
(5.12) 

Q_p,q = ~ Iaoo[COS(kp + kq)a]ppq,qp(a)da, P,q > 0, 
(5.13) 

Qp,_q = Q_p,q, Qp,q = Q_p,_q' (5.14) 

Here the covariances Ppg,p'q' (a) are defined by (4,13). 
The results (5.11)-(5.14) follow by elementary consi
derations from (3.16) and the special form (5.10) of x(t). 

From (5.11)-(5.14) it follows immediately that 

d n 
d :E (Wp(T) - W_p(T)) = 0. 

T p=l 
(5.15) 

This, of course, was expected in view of (5.4) and the 
definition of W p (T): 

Wp(T) = limE{IBp(T/E2)12}, 
(-+0 

W_p(T) = lim E{IAp(T/E2)12}, P = 1,2, ... ,no 
€-> 0 

(5.16) 

It also follows that the energies Wp + W_p, P = 1, ... ,n, 
satisfy the following system of kinetic equations: 

d n _ 
-d (Wp + W_p) = :E Qpq(Wq + W_ q) + 'Yp(Wp + W_p), 

T q=l 
P = 1,2, ... ,11, (5.17) 

Qpq = t 1000 

[cos(kp + kq)a + cos(kp - kq)a]ppq,qp(a)da, 

p~q, (5.18) 

(5. 19) 

n 00 

'Yp = :E 1 cos(kp + kq)appq,pq(a)da ~ 0. (5.20) 
q=l 0 

These kinetic equations constitute the main result of 
this section. 

The interpretation of equations (5.17) is different from 
that of (4. 12) because (5. 17) are not conservative, that 

is, :E;=l (W p + W_ p ) is not a constant. Upon summing on 

P in (5. 17) we obtain 

(5. 21) 

Note that the sum on the right side of (5.17) does not 
appear in (5.21). Let 

(5. 22) 

Since the W p + W_ p, P = 1, ... , n, are nonnegative we 
have 

(5. 23) 

and hence 
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n 
:E (W p + W _ p) ~ ce yr , 
p=l 

(5.24) 

where c is a constant depending on initial conditions. 

If we introduce dissipation in the system (5. 1) by adding 
on the left side the term 2E2[3(dz p/dt), [3 > 0, then, after 
a computation similar to that employed previously, 1 we 
obtain for W p + W_ p a system of equations identical with 
(5. 17) except that 'Y p is replaced by 'Y p - [3. Thus, in the 
case where dissipation is present, (5. 24) leads to the 
estimate 

n 
:E (Wp + W_p) ~ ce(y-B)r. 
P=l 

From (5.25) we deduce a stability condition 

[3~'Y, 

(5.25) 

(5.26) 

which generalizes the result of Stratonovich 12 for the 
single random harmonic oscillator. By stability we mean 
here that the total average energy :E;=l (Wp + W_ p) is a 
bounded function of T. 

Of more interest is, however, the explicit way in which 
(5. 17) expresses the mechanism of energy transfer 
among the oscillators. It is considerably more compli
cated than the corresponding result of Sec. 4. 

6. SCHRODINGER EQUATION WITH RANDOM 
POTENTIAL 

Let 1/I(t,x), x EO Rn, denote the wavefunction satisfying 
the Schrodinger equation 

i1/lt = t [~ + Ef..l(t,X)]l/I, t ~ 0, 1/I(0,x) = 1/10 (x), 

i = .../-1. (6. 1) 

Here ~ denotes the Laplacian in Rn, and /J.(t, x) is a sta
tionary random process with mean zero. We denote the 
ensemble average by E{ }. Thus 

E{/J.(t, x)} = 0, 

E{/J.(t ,x)/J.(t + s,x + ~)} = p(s, ~). 

We also assume that 

I /J.(t, x) I ~ 1 

almost surely. 

(6.2) 

(6.3) 

(6.4) 

Let us transform (6.1) to momentum space. We define 
the Fourier transform of 1/1 by 

~(t, p) = _1_/ 1 n eiP'Xl/I(t,x)dx; 
(21T)n 2 R 

hence 

1/I(t x) = _1_1 e-ip'X~(t p)dp. 
, (21T)n/2 R n , 

(6.5) 

(6.6) 

On multiplying (6.1) by eip ,x/(21T)n/2, integrating over 
Rn, and using (6.6), we find that 

iij/t = - tp2ij/ + t E i
R

n((21T)-n iRn ei(p-p'),x/J.(t,x)dx) 

xij/(t,p')dp'. (6.7) 

The quantity in the braces in (6.7) represents a distribu-
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tion-values stochastic process since for stationary pro
cesses the Fourier transform exists only in this genera
lized sense. p2 denotes the squared modulus of the 
momentum p. Define v(t, p) by 

v(t, p) = e-ip2t/2 tj; (t, pl. (6.8) 

Then from (6. 7) we obtain 

r (- ie-ip2t/2 
vt(t,p) = E JRH 2(21T)n fRn ei(p-q)'Xj..L(t,X)dXeitq2/2) 

x 1,(t, q) dq. (6. 9) 

To simplify the notation, we shall denote the quantity in 
braces in (6.9) by ji(t, p, q) and omit Rn in the integrals 
throughout. 

Let * stand for complex conjugate and define y (t, p, p') by 

y(t, p, p') = v(t, p) v*(t, p'). (6. 10) 

Differentiating y with respect to t and using (6.9), we 
obtain the equation 

Yt(t,p,p') = E f ~(t,p,q)y(t,q,p')dq 

+ E f il*(t,p',q')y(t,p,q')dq', 

y(O, p, p') = ~o (P) ~6(P') = Yo (p, p'). 

We shall also write (6.11) in abstract form 

(6. 11) 

Yt = E(ji(t) Q9 I + I Q9 il*(t))y == EV(t)y, y(O) = Yo' 

y = v Q9 v*. (6. 12) 

We now proceed by applying to (6.12) the result stated at 
the beginning of sec. 3. 

As before, the remarkable fact about this result, in con
nection with (6. 12), is that it yields a closed equation for 

W(T,p) = W(T,p,p) = lim E{ly(T/E2,p,p)12}, (6.13) 
E-iI> 0 

the diagonal part of the tensor w. W(T, p) is the expected 
value of the probability density in momentum space in 
the limit of small fluctuations and long times. 

The details of the calculation of V are very similar to 
the previous ones and so we shall omit them. One very 
important difference here is the strong use we make of 
(6.3), the translation invariance in space of the covari
ance p (s, ~). In the discrete case this played no role, of 
course. We also assume that 

(6.14) 

The result is that W(T, p) satisfies the conservative 
transport equation 

WT(T,p) = f [Q(P,q)W(T,q)-Q(P,q)W(T,p)]dq, 

T:O::O, W(0,p)=I~o(P)12, 

- 1 100 
[ 1 Q(p, q) ="2 0 (21T)n f ((P2 - q2)a 

cos 
2 

+ (q - P).~)p(a, ~)d~J da 

This is the main result of this section. 

(6.15) 

(6.16) 

Let us make the following observations concerning (6.15) 
First the kernel Q is nonnegative (because it is the 
space-time Fourier transform of a covariance); so 
(6.15) is indeed a transport equation, and 

f W(T,p)dp (6.17) 

is manifestly independent of T. If we normalize the inte
gral (6. 17) to equal 1, then W(T, p) can be thought of as a 
probability density of a continuous time Markov process 
with values in Rn. These results are analogous to those 
of Sec. 4. 

When p(a, ~) is a product of a a function in a and a 
covariance function in ~, then Q (p, q) is a function of 
p - q only and (6.15) coincides with a result of Dolin17 
and Klyatskin and Tatarskii. 18 

Besieris and Tappert19 have recently obtained further 
generalizations of (6.15), and they have also explored 
other aspects of the problem of this section. 

7. THE KLEIN-GORDON EQUATION WITH RANDOM 
PLASMA FREQUENCY 

We shall consider here the real-valued scalar field 
u(t, x), x EO Rn, satisfying the equation 

U tt - t:.u + [m 2 + Ej..L(t,X)]u = 0, t:o:: 0, u(O,x) = uo(x), 

ut(O,x) = uo(x), (7.1) 

We adopt again (6.2)-(6.4). m 2 is the expected value of 
the plasma frequency, a positive constant. Equation (7. 1) 
arises, of course, in contexts other than plasma physics 
but we shall adhere to this application for concreteness. 

Let u(t, p) denote the Fourier transform (6.5) of u(t, x). 
P EO Rn is the wavenumber vector. From (7.1) we obtain 

Utt + Z2(p)u 

+ E f (_1_ f ei(p-q).xj..L(t, X)dX) u(t, q) dq = 0, (7.2) 
(21T)n 

Z(p) = + ,Jp2 + m 2 . (7.3) 

Next we introduce the normalized complex valued ampli
tudes A (t, p), B(t, p) by setting 

u(t,p) = Z-1/2(p)[e iZ (P)tA(t,p) + e-iZ(p)tB(t,p)], (7.4) 

ut(t, p) = ill/2(p) [eiZ(P)tA(t, p) - e-iZ(P)tB(t,p)]. (7.5) 

Then, as in Sec. 5, we obtain the following system for A 
andB: 

(
At(t, P») (A(t,q») 

= E f X(t,p,q) dq. 
B t (4 p) ,B(t, q) 

(7.6) 

Here X(t, p, q) is the 2 x 2 matrix 

_ (e-j[z(p)-Z(q)]t e-j[z(p)+z(q)]t ) 
j..L(t,p,q) , 

_ ei[z(p)+z(q)]t _ eilz(p)-/(q)]t 
(7.7) 

il(t, p, q) = Z-1/2(p)[i/2(21T)n] f ei(p-q).xj..L(t, X) dxZ-l/2 (q). 
(7.8) 

The system (7.6) corresponds to (6.9). By taking tensor 
products we can obtain here also the analog of (6.11) or 
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(6.12). Then we may apply the result stated at the be
ginning of Sec. 3 and obtain closed equations for 

W A(T,p) = lim E{IA(T/E2, p)12}, 
€->O 

W B(T, p) = lim E{IB(T/E2,p)12}, 
E.~O 

If we assume that the covariance p satisfies 

pta, ~) = pta, - n 
then we obtain a transport equation for 

as follows: 

W
7

(T,p) = J [Q(p,q)W(T,q)-Q(p,q)W(T,p)]dq 

+ y(p)W(T, p), 

Q(p, q) = t 1000 J 
+ (p- qH} 

[l(p)l(q)]-l (cos{[l(P) _ l(q))a 
(21T)n 

+ cos{[l(p) + l(q)]a + (p - q).~}) 

x pta, ~)d~da 

( 
[l(p )l(q) )-1 

y(p) = J 1000 J cos{[l(P) + l(q))a 
(21T)n 

+ (p - qH}p(a, ~)d~da) dq. 
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The nonconservative transport equation (7.13) in wave
number space is the main result of this section. 

From the definition ofA(t,p) and B(t,p) we find that 

W(T, p) = lim E l-l- [i::t~(~, p\ + l2(p)U2(T/E2, p)l t. 
(~O 2l(p) E2 ') J\ 

(7.16) 
Thus, W(T, p) is the normalized average field energy 
density.20 We have remarked already that the transport 
equation (7.13) is nonconservative. This is due to the 
presence of the term involving y(p) which is nonnegative 
for all p E Rn. Equation (7. 13) is in fact quite analogous 
to (5.17). In order for the total average field energy to 
remain bounded as a function of T, we must introduce 
dissipative terms of order E2 in (7.1) as we did in (5.1). 
For example, if we introduce the term 2E 2 {3u t (t, x) on the 
left side of (7.1), {3 constant, we obtain the stability con
dition 

(3 > y(p) for all p ERn. (7.17) 

This condition implies that J W(T, p)dp is a bounded 
function of T. 
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If the postulate of symmetry on which special relativity is built is rejected, a generalization of the relativistic notions of 
event and space-time can be proposed. The generalization leads to the notion of noumenon. The noumenon possesses a 
handedness; it is a seven-parameter entity obtained by associating with an event the angular momentum corresponding to 
a particular evolution of that event. The noumenon is defined in the complex extension C. of space-time R4 . The main 
purpose of the paper is to prove the acceptability of the new concepts when confronted with experimental results which 
are generally regarded as supporting the classical theory of relativity. The potential fruitfulness of the new concepts is 
shown by a short review of similar ideas developed independently by several authors in different fields of physics: A 
Maxwellian theory of gravitation is developed; interactions between gravitation and electromagnetism appear, which have 
common characteristics with weak interactions; and it is suggested that the extra degrees of freedom of the noumenon 
are related to the quantum numbers of elementary particles. 

1. INTRODUCTION 

Physics, mathematic s, and mechanics are three comple
mentary domains of science. Physics is the science 
treating of the material world and its happenings; the 
role of physics is to discover the laws describing the 
relations between happenings. Mathematics, starting 
from a minimum set of axioms, creates abstract en
tities and then studies all exact relations existing be
tween these mathematical beings. Finally, mechanics 
is ultimately the mapping of physiCS into mathematics. 
From these short definitions, the role of mechanics 
appears to be twofold: choice of an elementary physical 
entity and choice of a mathematical being which the 
physical entity can be associated with. 

According to this general scheme, relativity theory 
(special or general) is conventionally developed on the 
following two postulates: (1) The most fundamental 
physical entity is the time point or event and (2) space
time, the set of events, can be mapped one-to-one into 
the set of 4-vectors of a four-dimensional manifold. 
These basic hypotheses introduced in the early 1900's 
by Lorentz, Poincare, Einstein, and Minkowski have 
proven so fruitful that they may seem impossible to 
challenge. In fact, however, further evolution of physics 
has shown that they apply only to the macroscopic world; 
they do not apply directly to microphysics. De Broglie 
(1923) suggested that particles behave like waves in 
space-time, Heisenberg's mechanics (1925) rejected 
the classical notion of position and trajectory, Dirac's 
theory (1928) showed that spinors playa more fundamen
tal role in nature than vectors do_ 

The thesis sustained in this paper is the following: The 
success of relativity theory does not prove the ultimate 
validity of the relativistic mapping, as defined above. 
The numerous experimental "verifications" of the 
classical theory prove a more general property: the 
fundamental role played by the Lorentz- group in nature. 
In particular, corresponding to the more fundamental 
spinor representation of the group a new representation 
space will be mathematically defined. By inverse 
mapping onto physics, a new concept of universe will 
be proposed, as well as the definition of a new funda
mental entity: the noumenon. The term is borrowed 
from Plato and Kant; it means thing-in-itself in contrast 
to the" phenomenon" or thing as it appears to us. These 
new concepts will be regarded as a generalization of the 
classical notions of space-time and event. 

The Lorentz-group1 is homomorphic to SL(2, e), the 
group of unimodular 2 x 2 complex matrices. SL(2,e) 
has two self-representations n 1/ 2 ° and no 1/2, the rep
resentation spaces of which are, respectively, a two-

dimensional complex space and its complex conjugate. 
The elements of the representation space are two-com
ponent spinors belonging to the Minkowski-space R 4 ; 

they are each treated as a column matrix. The proper 
Lorentz-group corresponds to the n 1/ 2 1/2 representa
tion of SL(2, e); the elements of the representation space 
are spinors of order two of R 4 • The classical relativis
tic formalism is based on the isomorphism between 
spinors of order 2 and 4-vectors of the Minkowski
space. 

As early as 1911, another equivalent formalism had 
been discovered,2 which has the advantage of display
ing particularly well the relation between the represen
tations n 1/ 2 1/2 and D1/2 O,DO 1/2: It is the biquaternion 
formalism. As will be discussed in more detail in the 
next section, the ring of biquaternions is isomorphic to 
the ring of 2 x 2 complex matrices. In the correspond
ing formalism, an event observed in two Galilean frames 
k' and K is mapped into two biquaternions m' and M, 
which transform under a Lorentz-transformation accord
ing to 

(1) 

where t and its complex conjugate t' are biquaternions 
of norm unity, i.e., are, respectively, elements of the 
representations nl/2 ° and DO 1/2 of SL(2, e). It will be 
shown that t can be chosen such that t = t". The entity 
mathematically defined by the biquaternion: 

(2) 

will be mapped into a new physical entity possessing a 
handedness: the noumenon. Noumena are defined in the 
space of 2 x 2 complex matrices, which will appear to 
be the complex extension e4 of space-time R 4 • 

Then the biquaternion mapping is generalized in two 
steps. First, a restricted definition of the physical con
cept of event is proposed: In a frame K an "event" is a 
fixed point at a given time. Second, the biquaternion 
mapping is redefined as follows: An "event" defined in 
a frame K is a noumenon in any other Galilean frame 
k, and not an "event" as assumed in classical relativity 
theory. The ultimate validity and the implications of 
the biquaternion mapping are discussed. 

2. BIQUATERNION ALGEBRA-NOTATIONS 

Biquaternions3 are hypercomplex numbers of order 8. 
The biquaternion algebra (Pauli algebra) is the Clifford 
algebra4 of order 3. The three unit-vectors, on which 
the algebra is built, can be represented by the three 
Pauli matrices u. Consequently a biquaternion q, noted 

(3) 
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can be represented by the 2 x 2 matrix q: 

(4) 

where I is the unit matrix and where the four compo
nents qo, q may be complex. Accordingly, the biquater
nionic multiplication * is defined by 

q*Q = (qo,q)*(Qo,Q) 

= (qoQo + qoQ, qQo + qoQ + iq /\ Q). (5) 

For a biquaternion q, one has the following definitions 
and the corresponding properties directly derived from 
Eq. (5): 

The q conjugate of q is the biquaternion q: 

q = (qo,- q). (6) 

The q conjugation is an anti-automorphism of the ring 
of biquaternions 

The c conjugate of q is the biquaternion q' : 

q' = (qb,q'), 

where the dot denotes the complex conjugate. The c 
conjugation is an anti-automorphism of the algebra 

(8) 

(9) 

The qc conjugation is an automorphism 5 of the alge
bra 

(10) 

The norm of q is the generally complex scalar N(q): 

N(q) = q*q = qil - q2 = q*q. (11) 

Note that with the matrix notation of Eq. (4), 

N(q) = det(qo I + qou). (12) 

It results from Eq. (7) or Eq. (12) that the biquaternion 
algebra is normed: 

N(q* Q) = N(q)N(Q). (13) 

The inverse of a biquaternion q(nonzero norm) is the 
biquaternion q-l: 

Any biquaternion q of norm unity can be written as 
the product of two biquaternions of norm unity: 

q = t*r (14) 

with 
t = (cosha,t sinha), and r = (cose, ir sine), 

where a and e as well as th~ unit-vectors t and rare 
real. Note that r is a quaternion5 and that 

t' = t, r' =r, q' =r*t. 

3. BIQUATERNION MAPPING-LORENTZ 
TRANSFORMATION 

(15) 

Let M ° be a point in a Galilean frame of reference K. 
We can measure the coordinates X of the point M 0 from 
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the origin 0 of the frame K by using the "Gedanken
experiment" suggested by Einstein (1905), i.e., by ob
serving the round trip time required by a light pulse 
on the path OM 00, Then consider the physical entity 
;m: represented by the same fixed point Moat a given 
time Xo defined with the same techniques; this happening 
;m: is considered in K as an event M and is represented 
by the biquaternion M with four real components: 

(16) 

Note that according to Eq. (11) the norm of M is real 
and equal to the square of the length of the 4-vector 
Xo,X in space-time. 

Now let k' be another Galilean frame. Classical relati
vity theory requires;m: to be considered as an event in 
k', i.e.,;m: must be represented in k' by a biquaternion 
m' having four real components: 

k' 
;m: ----7 Ill' = (xo, x'). (17) 

To fulfill the condition of reality, taking Eq. (9) into 
account, the linear relation between the biquaternions 
M and m' must have the form 

(18) 

where the norm of q must be unity6 for m' and M to 
have the same norm (Lorentz transformation). Via 
Eqs. (14) and (15), the transformation defined by Eq. (18) 
can be written 

(18') 

For t = 1 (i.e., a --70), the transformation equation (18') 
reduces to 

(19) 

which represents a spatial rotation - 2e of the frame K 
around the vector r(Hamilton-1853). Consequently when 
the coordinate axes of k' and K are parallel, the trans
formation equation (18) can be written 

M --7m' = t*M*t, 

where 

t = (cosha,t sinha) = y(l,tJ) 

with 

y = (1 - {32tl/2 . 

(20) 

(21) 

By developing Eq. (20) according to Eq. (5), one gets 
directly the vectorial expression7 of the Lorentz trans
formation 

Xo { (xo = y(Xo + (3' oX) 

X (--7)x' =X+I1'(Xo lJ' (y'-l) +Y'Xo), (22) 
" 1J'2 

where 11' is the velocity of the frame K in k': 

IJ' = 211/(1 + {32) (23) 

and 
y' = (1-11'2t1/ 2, 

In particular, we note that Eq. (23) shows that the velo
city IJ' is relativistically twice the velocity {3. 
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4. THE NOUMENON 

Equation (20) shows that the Lorentz transformation is 
performed in two steps, in two possible ways according 
to the schemes: 

m = t*M 

M/ ~m'=m*t=t*m" 
~ / 

m' = M*t 

(24) 

We call the entity mathematically represented by the 
biquaternion m (or m') a noumenon 8 and, more precisely, 
a left-noumenon (or a right-noumenon) to express the 
noncommutativity of the biquaternion product. The com
ponents xO' x of the noumenon m are complex, and the 
norm of the biquaternion m is real and t invariant 
according to Eqs. (13) and (21); thus, the noumenon de
pends on seven parameters; The noumenon is a more 
fundamental entity than the event; it carries in itself 
the information pertaining not only to the position of the 
happening~, but also to the evolution (velocity) of that 
happening; furthermore, it permits attribution of a han
dedness characteristic of the evolution of the happening. 
This last property will be discussed in more detail in 
the last section. 

By developing the relation m = t*M we obtain the ex
preSSions of the four complex components of the nou
menon m: 

Xo} j Xo = y(Xo + f3 -X) 
X ~1x = y(X + fJXo + i~ II X)' 

(25) 

Comparison with the classical expression (22) of the 
Lorentz transformation shows a remarkable similarity: 
The transformation formulas for the time component 
and the component in the direction of the motion have 
the same form. The noumenon m (or m') can be consi
dered as defined in the complex extension of the frame 
k in which the velocity of K is f3 and in which the velo
city of k' is - /1, according to the concluding remark of 
Sec.3. Since the direct "verifications" 9 of the classical 
theory of relativity were precisely designed to check 
the transformation formulas for the time component 
and the component in the direction of motion, we raise 
the question of the ultimate validity of the relativistic 
mapping, and we propose a more fundamental approach. 

For that purpose we will restrict the classical notion 
of event as follows: In a frame K an "event" 10 is a 
fixed point at a given time. An "event" is represented 
by a biquaternion M with four real components. The 
generalized biquaternion mapping can then be redefined 
as follOWS: 

An "event" defined in a Galilean frame K is a nou
menon (left or right) in any other Galilean frame of 
references and not an event as assumed in the 
classical theory of relativity. 

This hypothesis can be interpreted as follows: When 
observing in the frame k the "event" M defined in K, 
the result of the measurement gives 

(1) the four coordinates of Min k; they are taken as the 
real parts xo, Xy of the components of the noumenon m 
(in classical relativity theory they are taken as the 
components of the "event" m' in k') and 

(2) the components f3 of the velocityll of M in k. 

From Eq. (25) the noumenon m is the seven-dimensional 
happening 

(26) 

In classical terms, the noumenon is obtained by associat
ing with an event the angular momentum corresponding 
to the evolution of that particular "event." Reciprocally, 
given a noumenon and its handedness the immediate 
evolution of the corresponding "event" is well defined 
by Eq. (26). ThUS, the new entity contains a dynamiC 
property which characterizes the existence of the physi
cal being it refers to; indeed, existence supposes some 
extension in space-time: The term noumenon is used 
here in a sense close to the sense of thing-in-itself 
given by the Greek philosophers and by Kant in his 
early works. Since physics is the science of existing 
beings it can be expected that it will be more fruitful to 
build a mechanics on the existential notion of noumenon 
instead of on the static notion of event. 

The noumenon is defined in the complex extension C 4 
of R 4 : Under the biquaternion mapping, the universe has 
to be considered as a complex four-dimensional mani
fold. In particular, it appears that this concept, inspired 
by Dirac's formalism, leads us to replace the classical 
concepts of position and trajectory, rejected by Heisen
berg's mechaniCS, with more generalized concepts, 
which will be shown in the next section to be compatible 
with experimental observations. 

Further examination of the transformation t defined in 
Eqs. (25) shows that the formulas differ from the classi
cal formulas for the components normal to the motion: 
First by the presence of the complex term and second 
by the dilatation factor y. This last remark seems to 
indicate the possibility of a direct test of the theory, a 
test in which the lateral dilatation could be evidenced. 
Interpretation of the Michelson experiment (1881) will 
show the difficulty of the task. 

In the classical interpretation, when considering the 
negative result of the Michelson experiment from a 
frame k attached to the Sun, it is supposed that the 
length of the north- south arm of the interferometer is 
not affected by the motion of the Earth, only the length 
of the east-west arm is contracted. In the present 
theory the classical interpretation applies also to the 
EW arm. For the NS arm, let E = (0,0) represent the 
emission of a light pulse used in the Michelson experi
ment and let R = (Xo,X) be the reflection of the light 
pulse at the extremity of the NS arm, as measured in 
the frame K attached to the interferometer. The norm 
of R is zero. In a frame k attached to the Sun, the cor
responding noumena are e = (0,0) and r = (xo, x). The 
norm of r is zero since r = f,,,R; furthermore, since Xo 
transforms as in the classical theory, the length Ixl of 
the trajectory of the photons used in the experiment is 
the same as in the classical case; the same conclusion 
applies for the return path. Consequently, as in the 
classical case, an observer in the frame attached to 
the Sun arrives at the same conclusions as an observer 
attached to the interferometer: The NS and EW light 
paths are equal. 

The result was expected, because both theories are 
based on the same postulate: The measure of the velo
city of light is independent of the frame in which the 
measurement is made. Translated into mathematical 

J. Math. Phys., Vot13, No. 12, December 1972 



                                                                                                                                    

1922 E. Y. ROCHER 

terms, Lorentz transformation and t transformation 
are representations of the same group SL(2, C). For 
the same reason the law of composition of parallel 
velocities is the same in both theories; a second-order 
difference appears for the compOSition of nonparallel 
velocities. The main difference between the two theories 
is in the definition of the distance between two points 
(events or noumena) in space-time (real or complex), 
i.e., in the choice of the metric. In conclUSion, a direct 
test of the theory should be a test of the definition of the 
metric. The test performed in a frame k would consist 
of observing a fast-moving object of known transverse 
dimensions at rest in K (Y, Z), and in checking that in k 
the object appears dilated (Yr = yY,zr = yZ). 

An indirect method to establish the validity of a theory 
is to prove its fruitfulness. The next section develops 
some elements of a unitary field theory in the complex 
space-time C 4' and, in particular, it introduces the con
nection between the biquaternion mapping and the work 
on quaternion-factorization of the metric of general 
relativity as initiated by Einstein (1929) and redeveloped 
more recently by Bergmann (1957) and Sachs (1968). 

5. FIELD THEORY IN THE COMPLEX UNIVERSE C4 

Shortly after publication of Dirac's paper, several 
authors tried to introduce hypercomplex numbers in 
mechanics. In quantum field theory12 the quaternion 
formalism appeared particularly well adapted to the 
two main relativistic field theories: Maxwell's theory 
and Dirac'S theory. In general relativity,13 a quater
nion factorization of the metric offered the possibility 
of generalizing to electromagnetism the geometrization 
of gravitation. Ever after, these ideas have been further 
developed by many authors, but have generally looked 
too artificial to become fruitful. We shall show how the 
concept of noumenon, elementary entity of a complex 
universe, offers a simple and natural approach to unify 
the different branches of mechanics. 

A. The quaternionic propagation operators 

To describe the properties of the representation space 
C 4 , it is necessary to introduce a differential operator. 
In the present context it is natural to define the linear 
biquaternion operator 

P = (ax ,ax), (27) 
o 

where 

ax = _a_ = _0_ + i_o_, 
j oX

j 
oXrj aXCj 

where Xrj and XCj are the real and complex parts of the 
complex coord~ate X~ in the frame K. The q conjugate 
of P is written P and IS defined by 

(28) 

By definition the operators P and ji operate on biquater
nionic functions placed on their right-hand s~e.14 Suc
cessive applications of the operators P and P give the 
scalar complex operator EI : 

(29) 

Consequently, the operators P and P appear as propaga
tion operator in C 4 defined in the frame K. 

Similarly, in a frame k the propagation operators are 
defined by 
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p = (ax ,Ox), 15 = (ox ,-ox), (30) 
a 0 

Via Eq. (25) the relations between the operators p and P 
are 

p---.p=P*t, P---7p=hP (31) 

Consequently, 

(32) 

The scalar propagation operator GJ is t invariant. 

Let <l> = (<l> 0' if» be a biquaternion function defined at 
each point in C 4' Supposing the potential <l> differentiable 
in C4 , then the propagation equation of a wave propagat
ing at speed c = 1 in C 4 can be written 

GJ <l> = R. 

This second-order equation can be replaced by two 
coupled first-order equations 

P*<l> = F, 

Under a t transformation the density R transforms 
according to15 

R---7r=R*t. 

(33) 

(34) 

(35) 

(36) 

Consequently, since in Eq. (33) the operator GJ is t in
variant, <l> transforms according to 

and 
F---7 f = hF*t 

to assure the t covariance of Eqs. (34) and (35). Note 
that F transforms like F: 

(37) 

(38) 

(39) 

Consequently, the scalar part of the biquaternion field F 
is t invariant. 

If, now, the operators P and P are defined in R4 instead 
of C4 , i.e., they are restricted to the real components, 
then the scalar operator 0 is real, and since 0 is in
variant, it is also real in any other frame k. If the po
tential <l> is complex, the propagation equation (33) will 
split into two uncoupled equations 

(40) 

between the real and complex part of <l> and R. A coup
ling will appear between the first-order equations (34) 
and (35). 

B. Maxwell equations-Maxwellian gravitation 

The preceding results can be applied to electromagne
tism in R 4' First consider the equations of electrosta
tics in K. Let <l> = i<l>c = i( V, 0) be the electrostatic 
potential, and let R = iRe = i(R, 0) be the charge density. 
Then the second equation (40) is Poisson'S equation in 
K, Eq. (34) defines the electrostatic field E: 

F = P*<l> = i(oo V,- gradY) = (0, iE), (41) 

and Eq. (35) is the expression of Gauss' theorem 

P*F = (i divE,O) = (iR,O). (42) 
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Finally, the density of electrostatic energy must be a 
quadratic invariant under charge conjugation, i.e., under 
c conjugation for reasons which will appear more 
clearly later: 

(43) 

The equations in a frame k are obtained by a t transfor
mation according to Eq. (37): 

1> = i(v,- a), (44) 

j = P* 1> = i(aov + diva,- aoa - gradv + i rota) 

= (0, ie - h), (41') 

where the scalar equation (Lorentz-condition) is deduced 
from Eqs. (38), (39), and (41).16 In the frame k Eq. (42) 
gives 

(i dive- divh,i(aoe- roth) - (Goh + rote» = (ir,- ij). 

(42') 
When considering from k another source attached to a 
frame K' similar equations are obtained; since they are 
linear they can be added without changing the form of 
Eq. (42'). Then Eq. (42') splits into two scalar and two 
vector equations, which are the four Maxwell's equations 
(1864). 

Finally, the density of electromagnetic energy is given 
by the C-invariant biquaternion 

w =j*1' = (e2 + h2,- 2ie A h), (43') 

where one recognizes the classical expression of electro
magnetic energy density associated with the Poynting 
vector. 

These results can be applied to calculate the equations 
of motion in C 4 of a charged particle (mass It, charge e:) 
in an electromagnetic field. Taking Lorentz's approach 
as a first approximation, the equation of motion in a 
Galilean frame K, in which the particle is at rest at a 
given time, reads 

d 2M . 
It -- =- ze:F. 

ds 2 
(45) 

In another Galilean frame k, we get after left multiplica
tion by t and according to Eq. (38): 

d 2 m . 
It-- = - ze:j*t 

ds 2 ' 
(46) 

the real part of which gives the equations of the motion 
observed in R 4 : 

(47) 

These equations are the classical relativistic equations .17 

This important result has two consequences: (1) It 
assures the compatibility of the proposed theory with the 
most important class of experiments supporting the 
classical theory of relativity-the experiments involving 
the interaction of a charged particle with an electromag
netic field, and (2) it is a first example showing the 
acceptability of the new notion of complex trajectory. 

Another particular case of the field equations (33)-(35) 
is <I> = <I>r = (V', 0) and R = Rr = (R', 0). It is obtained 
by replaCing the charge e: by It = ie:. Consequently 
Coulom-b's repulsion transjorms into an attraction, New
lon's attraction as we will assume. Under this hypothe
sis the real part of the complex wave <I> becomes the 
gravitational potential, the complex part being the elec
tromagnetic potential. The quantities related to a gra
vitational origin will be represented with a prime. 
Equations (41)-(42') apply up to the factor i. The den
sity of gravitational energy is given by the C-invariant 
biquaternion 

w' = - j' *j" = (- e'2 - h'2, 2ie' A h'). (43") 

We will discuss in the last section some of the implica
tions of the preceding hypotheSiS. 

As in the electromagnetic case, the notion of complex 
trajectory of a massive body in a gravitational field can 
be shown to be acceptable. We are referring here to the 
interpretation of the three" tests" of general relativity. 
In fact Schiff18 has shown that among the three implica
ted effects, at least two can be interpreted simply by 
introducing the principle of equivalence into special 
relativity. Adapting Schiff's method to the new theory 
gives the same interpretation of the gravitational red 
shift and with a somewhat Simpler algebra, due to the 
introduction of the transverse dilatation, gives the con
ventional expression for the deviation of photons by a 
gravitational field. The third effect concerns the ano
malous part of the perihelion preceSSion of planetary 
orbits (only observable for Mercury); it is considered 
as characterizing the Riemannian structure of space
time. Recently, searching for the expression of this 
third effect under the assumption of a biquaternion
factorization of the Riemannian metric, Sachs19 has 
found the same expression of the perihelion precession 
as found under the conventional hypothesis of a sym
metric metric tensor. This formalism leads, as expec
ted,13 to a unitary theory of electromagnetism and 
gravitation, which has common characteristics with the 
proposed field theory in C 4' 

At the flat space limit of Sachs' approach, the differen
tial interval in R4 is mapped, as in Eqs. (3), (4), into a 
biquaternion ds: 

(48) 

the norm of which is the classical invariant ds 2 • In the 
presence of a field, the a ex are replaced by another set 
of four field dependent biquaternions qa' The correspon
dence with the metric tensor is then defined by 

gl'V ~ _ t (ql' * qV + q" * ijl') = _ Sc(ql' * qV) (49) 

where Sc(q) refers to the scalar part of biquaternion q. 
The qa are determined by four metric field equations 
analogous to Einstein's field equations (1916): 

1. (K qA + qA Kt ) + 1. Rq = xS 4 pA pA 8 P p' (50) 

where KPA is the "spin curvature" and R the scalar 
curvature of the Riemann space and where the biquater
nions Sp characterize the source field. By proper com
bination of the field equation and its q conjugate, two 
tensor equations are built: The symmetric-tensor part 
(scalar part) leads to Einstein's original theory of gra
vitation, the antisymmetric-tensor part (vector part) 
leads to Maxwell equations. 20 With this approach, gra-
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vitation and electromagnetism receive a similar geome
tric interpretation, suggesting that both fields can be 
combined in a unique entity as we have done in Eqs. (40). 
However, our approach is very different in a basic and 
in a formal aspect: Equations (40) are defined in a flat 
space and we do not try to resymmetrize the formalism, 
as is done in Eq. (49); indeed, once the difficult concepts 
of noumenon and of complex space-time are accepted, 
the necessity of symmetrization does not appear. Never
theless, some problems appear in the field theory when 
considering the interaction between electromagnetism 
and gravitation. They will be discussed in the last sec
tion. 

C. Discussion-further developments 

In the general case the potential cP is complex: 

cP = (v' + iv,- c(a' + ia), (51) 

where the speed of light c has been introduced to use the 
MKSA system. The biquaternion field defined by Eq.(34) 
is 1" = (0, ie" - ch") with21 

e" = e + ch', 

ch" = ch - e', 

(52) 

(53) 

Where, following the electromagnetic model, a general
ized principle of equivalence between radiating and gra
vitating masses is assumed, Le., with 

EO = 1/iJ.oC2 = 1/417G (54) 

(G = gravitation constant). Contrary to the potential 
wave equation (33), the field equations (34) and (35) show 
a coupling between gravitational and electromagnetic 
fields. The coupling is very weak and can be evaluated. 
For example, Eq. (52) shows that a rotating mass creates 
a girogravitational field h' which is equivalent to an 
axial electric field. In the case of the Earth this field 
can be calculated adapting classical formulas of electro
magnetism. One finds at the center of the Earth 

c ll ' !Ill' 
ch' = _""_0 

217 R3' 
(55) 

where !Ill' = 7.1 X 1033 MKS is the kinetic momentum of 
the Earth and R = 6.4 X 10 6 MKS its radius. Even in 
the case of as large a massive body as the Earth, the 
axial field is still very small: 

ch' = 1.4 x 10-5 Vim. 

This field value compares favorably with the estimated 
10-7 V 1m electric field, the origin of which is still hypo
thetical, necessary to explain the geomagnetic field. 
This field creates in the core a small current (10- 6 AI 
cm2 ) which by dynamo effect is responsible for the 
Earth's magnetic field. 

A basic difficulty appears in this Simplified gravito
electromagnetic interpretation of the wave equation (33), 
when considering the inverse effect of an electromagne
tic field on a mass. Solving the difficulty requires a de
tailed analysis of the symmetry properties of the biqua
ternion algebra; this analysis will be initiated here. The 
preceding results have then to be considered as funda
mental solutions of the field equations, to be recombined 
to fulfill the proper symmetry condition.22 

In Table I are gathered the elements of the discussion 
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TABLE 1. Internal Symmetries of the Complex Universe e l' 

Unit Vectors eo el elm = e1e'ri e 123 
Matrix Repres. J (II ifJl if 
Unit Square + 1 + 1 - 1 -1 

--------
Q Conj: (- T) + + 
e Conj: (e) + + 
QC Conj: (P) + + 

Noumenon XOr Xr Xc xOc 
Potential v' a' a 
Source r' j' j r 
Field 0 ch- e' e + ch' 0 

of the correspondence between symmetries of the biqua
ternion algebra and symmetry properties of the com
plex space-time C4 • The table is divided into three 
parts. The first three rows define which one of the four 
possible representations of the biquaternion algebra is 
chosen for the biquaternion mapping; the next three rows 
indicate which unit vectors are reversed under a given 
conjugation; the last part shows how the components of 
different physical entities are assigned to the unit vec
tors. 
Q conjugation is a complex space inversion or a complex 
time reflection (- T). Under a c conjugation the electro
magnetic potential and its source are inverted; c conju
gation appears as a charge conjugation (C). Finally, qc 
conjugation is obtained by reversing the orientation of 
the real space (P). According to this interpretation, the 
product of the three fundamental symmetries C, P , and 
T of the complex universe C 4 is CPT = - 1. Of particu
lar interest here is the interpretation of the c conjuga
tion. ClaSSically, charge conjugation interchanges par
ticles and anti-particles. Referring back to Eq. (24) de
fining the noumenon, right and left noumena are pre
cisely c conjugate of each other. The close relationship 
between charge, handedness, and rotation appears par
ticularly clearly in the proposed model of a complex 
universe. 
Up to here we have only been concerned with the macro
scopic aspect of the formal possibility of a concept of a 
complex universe. The macroscopic gravitcr-electro
magnetic interaction, as defined by Eq. (55), has two 
characteristics in common with the microscopic weak 
interactions: order of magnitude (intermediate between 
electromagnetic and gravitational) and symmetry [in 
Table I the corresponding potential v', a or v, a' have 
the rotation symmetry of a four-dimensional real Euc
lidean space, Le., SU(2) x SU(2)L23]. In fact, the re
quirement for a generalization of the basic concepts of 
event and space-time has always been even more press
ing in microphysics than in macrophysics, probably due 
to the availability of more powerful experimental tools. 

The most precise need for defining an entity possessing 
a handedness appeared with the experimental confirma
tion24 of the Lee and Yang25 hypothesis of "parity vio
lation" in weak interactions. The electrons created in 
the decay of oriented radioactive cobalt nuclei emerged 
all in the direction of the magnetic field, thus showing 
that besides their momentum, moving electrons are' 
characterized by an internal property: handedness. In 
the present context electrons are mapped into left nou
mena, anti-electrons into right noumena. The biqualer
nion mapping (26) is unIquely defined by nature in this 
case. 

A broadening of the classical concept of space-time has 
also always been strongly suggested in particle physics. 
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The various internal characteristics of elementary par
ticles (charge, baryon number, hypercharge, parity, .•• ) 
are often considered23 ,26 as manifestations of extra
angular degrees of freedom in some abstract space 
(isospace, isobaric space, subquantized medium, ... ) 
which is completely distinct from real space-time. In 
the present formalism those extra-angular variables 
are introduced in the general form of the transformation 
biquaternion q as defined by Eq. (14) and are given a 
precise geometric meaning. 

6. CONCLUSION 
The essential characteristic of this generalization of the 
concepts of space-time and event is its natural simpli
city. The generalization is based on the renunciation of 
one of the postulates on which the classical theory of 
relativity was built, the postulate of symmetry. Instead, 
a more involved algebra of space-time symmetries has 
been introduced, the role of which appears to be essen-

I See, for example, P. Roman, Theury of elementary particles (North-Holland, 
Amsterdam, 1961), 2nd ed., p. 60. 

'F. Klein, Phys. Z. 12, 17 (1911);C. Lanczos, thesis (1919) summarized in Z. Phys. 
57,447 (1929). 

3 The term biquaternion algebra is chosen here instead of algebra of 2 X 2 complex 
matrices for two reasons: (a) complex numbers and quaternions can be used to 
represent rotations, respectively, in the plane R, and in space R3 . The next 
generalization in the family of hyper complex numbers leads to biquaternions 
(complex quaternions after Hamilton): Biquaternions will be used to represent 
rotations in space-time. Note that the biquaternion algebra is the highest order 
associative algebra with a quadratic norm. (b) The three auto- or anti-automor
phisms of the algebra will be associated in the last section with the three basic 
symmetries C, P, and T. 

4 D. Hestenes, Space-time algebra (Gordon and Breach, New York, 1966). 
5 With the notation of Eq. (3), a guaternion is represented by q = (qo,iq) where qo 

and q are real. If the basis vectors were the basis vectors (iej) of the quaternion 
algebra, the qc conjugation would be a c conjugation and, thus, an automorphism 
of the algebra of complex quaternions, as it is. 

6 Up to a phase factor ei<l> which will be neglected. 
'G. Hergoltz, Ann_ Phys. (Leipz.j 36, 497 (1911). 
'Note that, under a Lorentz transformation the biquaternion m (or m') transforms 

like a pair of two-component spinors. Similar entities have already been proposed 
in physics, but with a very different interpretation; for example, Penrose's 
twistors in J. Math. Phys. (N.Y.) 8, 345 (1967). (See in particular Ref. 5.) 

9 H. E. Ives and G. R. Stilwell, J. Opt. Soc. Amer. 28, 215 (i 938); E. I. Williams 
and G. E. Roberts, Nature (Lond.) 145, 102 (1940). 

IOV,'hon used in its restricted sense, the term event will be enclosed in quotation 
marks. 

Il Note that the information concerning the velocity /3 of the "event" is always 
available during the experimental determination of the position of the "event": 
Doppler effect, trajectory curvature ... Direct introduction of Planck's constant 
(I 900) into the theory should then be made possible by noticing that the complex 
part of the noumenon, which corresponds in classical terms to an "uncertainty," 
is precisely equal to the angular momentum of the "event." 

12 See C. LanclOS, Ref. 2, and G. Rummer, Z. Phys. 65,224 (I930). 

tial in any further development of the theory. The main 
purpose of the paper is to prove the acceptability of the 
new concepts when confronted with the classical experi
mental results on which the classical theory is built. 
The noumenon possesses two main characteristics: (1) 
It has more degrees of freedom than the conventional 
point-like event, and (2) defined as a point in the complex 
universe it has a potential extension in real space-time. 
In the last section a rapid review of similar ideas deve
loped recently and independently in different branches 
of physics shows the unifying properties of the new con
cepts. The geometric interpretation of the added degrees 
of freedom should lead to a better understanding of the 
different forms of interactions. The potential space
time extension built into the concept of noumenon con
fers on the noumenon an intrinsic existence, which 
should lead to a geometric approach to quantum field 
theory, in agreement with the wishes of de Broglie, Ein
stein, and Mie. 

13 A. Einstein, Math. Ann. 102, 685 (1929). 
'41n the complex plane R, the operators P and P reduce to (a x + ia y) and 
(ax ~ ia y ). With the notations (30) Cauchy-Riemann's analyticity conditions 
are'written P . F = 0; when the analyticity conditions are not fulfilled in a region 
of the plane, the equation P . F = R characterizes the discontinuities of the 
field, i.e., its sources. 

IS An elementary volume dV can be defined in K by dV = dMl *elM, *dM3, in k 

by t*dV= t*dM, *dM, *i*i*dM3 = dml *dm, *dm3 = dv. Thus, a density 
transforms like dv- I = dV- 1 *i 

'6Note that the norm of the biquaternion field fis the invariant: N(f)~ 1*1= 
e' - h2 + 2ie . h and in the particular case of a unique source, by comparing 
with Eg. (43): e' h = O. 

l7With the classical approach the same definitions (27), (28) apply in a frame 
K with the property (29) and with the same field equations (33)-(35). In k' 
the transformation (20) leads to p' -+ i/ = t*P'*t [Eq. (31')J, <1>' -+ if' = /*<I>'*i 
[Eq. (37')J and, thus, F' -+ f' = i/*!/>' = {*F'*i = f [Eg. (38')J . The same relation 
(45) applies in K, and in k' one gets after right and left multiplications by t: 
!l(d2 m' Ids') = Re(i€f'*t*t) = -Re(i€f'*t') [Eq. (46')], where Re(q) means the 
real parts of q and with t' = tOt = /(1,/3') according to Eq. (23). The equations 
of motion in k' (46') and in k (46) have the same form_ 

18 L. I. Schiff, Am. 1. Phys. 28, 340 (1960). 
19M. Sachs, Nuovo Cimento B 56,137 (1970). 
20 M. Sachs, Nuovo Cimento B 55, 199 (1968). 

21 Quantities related to a gravitational (electromagnetic) origin are represented 
with (Without) a prime. 

22 For example, the generalized Lorentz-condition can be considered as requiring 
the biquaternion field to reduce to its vector part, i.e., to be invariant under time 
reflection (1), as will be discussed. 

2J L. de Broglie, D. Bohm, P. Hillion, F. Halbwachs, T. Takabayasi, and J. P. Vigier, 
Phys. Rev. 129,438 (1963). 

'4C. S_ Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys. 
Rev. 105, 1413 (1957). 

"T. D. Lee and C. N. Yang, Phys. Rev. 104,254 (1956). 
'6 For example, F. Halbwachs, P. Hillion, and J. P. Vigier, Ann. Inst. Henri Poincare 

16,115 (1959); G. R. Allcock, Nucl. Phys. 27, 204 (1961). 
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The problem of diffraction of a plane wave by an infinite array of paraliel strips is attacked by the newly developed modified 
residue calculus method. The solution is found in terms of an infinite set of zeros of an analytic function. The asymptotic 

behavior of the set of zeros is specified by the edge condition, wbile the first several zeros are determined from a matrix 
equation. 11,e rapid convergence of these zeros to their asymptotic values is demonstrated through numerical examples. For 
a given array of strips, it is shown that there exists a total ret1ection phenomenon at a critical frequency and incident angle. 
This fad suggests the possibility of constructing an open resonator with an extremely sparse resonance frequency. 

I. INTRODUCTION 

Diffraction of a plane wave by an infinite set of semi
infinite parallel plates was first solved by Carlson and 
Heins! by the Wiener-Hopf technique. Later, Berzz 
attacked the same problem by the residue calculus 
method. 

Practical interest in this problem stems from the use 
of the structure as a microwave lens to focus beams in a 
desired direction or to produce multiple beams, and the 
use of the structure as an artificial dielectric medium. 3 

In many such applications the plate length is in the order 
of the wavelength involved. Therefore, it is of impor
tance to study the diffraction properties of a set of plates 
of finite length. 
In the present paper, the problem is formulated in terms 
of an infinite set of linear equations, which is SOlVf~d by 
the newly developed modified residue calculus method. 

The same physical problem has been considered earlier 
by Meister. 4 He formulated the problem in terms of a 
modified Wiener-Hopf equation and solved it by a 
method developed by Jones. 5 Meister obtained only a 
formal solution in the form of an infinite set of simul
taneous linear equations from which it is difficult to ex
tract useful numerical results. The advantage of the 
modified residue calculus method used here over the 
method used by Jones has been detailed elsewhere 6- 8 

and will not be repeated here. 

II. FORMULATION OF THE PROBLEM 

The configuration of the infinite array of parallel strips, 
which have no y variations, is shown in Fig. 1. 

A TM wave which is incident from the left at an angle 
eo with respect to the x axis, is given by 

H (i) _ iaoz e-Box 
y - e , (1) 

where the time convention e- iwt is understood and 

z 

~h---l~ 
I 
I a 
I 

+e
o 
/'----------...... X 

> 
FIG.1. Parallel strip configuration. 
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2P1T + ka sineo 
(2) ap = 

a 

)+ (at - kZ)l/Z, if at ::: kZ (3) 

f3 p = 1- i (k Z - al)l/Z, if at < kZ (4) 

Due to the periodic nature of the geometry, the Floquet 
theorem predicts that the scattered fields have a diS
crete spectrum. In the three regions x s 0, 0 s x s h, 
and x 2: h they can be represented by 

H = y 

where 

for x s 0 

~o (Bne-YnX + cneYnx)cos (n;z) , 
for O:s x :s h 

for x 2: h 

\ + l(n1T/a)Z - kZ]l/Z, if (n1T/a)Z ::: kZ 

(5) 

(6) 

(7) 

Y n = , (8) 
( - i [k2 - (n1T/a)Z]l/Z, if (n1T/a)Z < kZ 

Our main interest is to determine the reflected and 
transmitted fields, Le., {A p} and {D p}. 
We begin the solution by deriving a set of linear equa
tions for {Ap} and {Dp} obtained by enforcing the conti
nuity conditions of the tangential field components at 
x = 0 and x = h. Fourier transformation of both sets of 
matching equations and straightforward algebraic mani
pulation results in 

Po~ooGp ~Yn ± f3:-:
n:J ut - (f30 ~ Yn + f3:-~n:J = 0, 

n = 0, 1, 2, •. " (9) 

where the symmetrical and asymmetrical components 
U; and Up are given by 

III. SOLUTION BY THE MODIFIED RESIDUE 
CALCULUS METHOD 

(10) 

For the special case h ~ 00, corresponding to an array 
of semi-infinite plates, (9) can be solved by the conven-
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tional residue method, and such a solution has been 
carried out by Berz.2 However, for finite h one has to 
modify (see Ref. 6) the conventional residue calculus 
method, as is to be detailed below. 

The central step in the solution of (9) by the residue cal
culus method is the construction of two meromorphic 
functions of a complex variable w with specific pole
zero configurations. The poles and zeros are chosen 
such that contour integrals about a circle of infinite 
radius in the complex plane generate residue series 
which are identical to the left -hand side of (9). 

Consider the integrals 

~,C ( __ 1_ + e-
Ynh

) f+ (w)dw 
27Tt Jew - Y n w + Y n ' 

2!ij:(W~Yn - :-;n:,,)f-(W)dW. 

(11) 

(12) 

Here r (w) and f- (w) are the functions mentioned in the 
paragraph above, and C is a circle of infinite radius in 
the complex w plane. The functions r (w) and f- (w) are 
required to satisfy the following conditions: 
(1) j+ (w) and f- (U') are analytic everywhere except for 

simpie poles at w = - (30 and w = {i3 p} for p = 
0, ± 1, ± 2 •.... 

(2) j± (w) has Jeros at {r~}, which are yet unknown and 
will be determined from the condition 

(13) 

for n = 0, 1, 2, .... 

(3) j+l(w) and f-l(w) have algebraic behavior, explicitly 
O(w- 1!2), as Iw! --> ce, This is to satisfy the edge 
condition. 6 

(4) The reSIdues off'(w) andf--(w) at w = -i3o,de
noted by Res! e (- ~10) and Resf- (- (30). respectively. 
equal one. 

The integrals (11) and (12) are identically zero by pro
perty (3). Evaluation of the integral (11) leads to 

(14) 

Clearly, if properties (2) and (4) are satisfied, then the 
residue series is identical to the left-hand Side of (9). 
It follows immediately that 

Ut=Resf'«(3). (15) 

In the special case h --. ce, (13) becomes 

(16) 

which means that/"(w) has zeros at w = 'Yn for n = 
0, 1, 2, .. '. For finite h, the zeros are shifted from {y } 

n I 

ut o 

(
- 2(3oa ln2) !vi 

= - exp fl 
7T n ~1 

to {r~} and {r~} in order to satisfy (13). It is impor
tant to recall the fact that the edge condition remains the 
same whether h is finite or infinite. This requires {r;.} 
to asymptotically coincide with {'Y J; that is 

lim r± = Y • 
n--"'OO n n 

(17) 

It can be shown6 that (17) is consistent with (13). The 
actual construction of r (w) follows closely that in Ref. 
4,6-8 and only the result need be stated: 

(
- (w + i3o)a) 2 f I ( w) = exp ln2 

7T (w+i3o)(l-w/l.1o) 

(1 - w/rtJ) 00 (1 + i3 0 1i3 n )(1 + i3 0 1i3_ n H1 - wlr~) 
x IT 

(1 + i3/rtJ) n~l (1 - w/i3 n)(l - w/i3_ n)(l + i3o/r~) . 

(18) 

It remains to evaluate the shifted zeros {r~} using (13). 

It was concluded from the edge condition that for large 
n, the shifted zeros {r~} coalesce with the unshifted 
zeros. Then there exists an integer M > ° such that 
I r~ - Yn I is arbitrarily small for all n > M. 

Thus, we need to solve only the first (M + 1) equations 
of (13) for {r~} while setting 

r~ =: Y n ' for n >M. (19) 

Substituting (18) and (19) into (13) one has 

¢± (w) I 
- t' ¢±(-w) - m' 

W-::Ym 
rn = 0, 1, 2, .... J\1, (20) 

where 1>+(w) and ¢-(w) are polynomials in lA' with un
known coefficients 

¢± (w) = IT 1- - = 1 + 6 F' w" !vi ~ W) !vi 

n~O r~ n o 1 n 
(21) 

and {t;,,} and {t;;.,} are known constants and given ex
plicitly by 

I'm = - t""m = - exp (_ Y m (h - 2: In 2) 
x f{ (1 -y,ji3n)(1-Ym/{3 n) 

n~l(1 + 'Ym/Pn)(l + y ml(:3,) 

00 (1-Ym/i3n)(I-y",/Pn)(1 + i',,)l'n) 
x fl / I" (22) 

n~M+l (1 + y m/(3)(1 + Y m i3_ n){1- ym !')i
rl

) 

Note that (20) is a set of UI!I + 1) linear equations for un
knowns {F~}; Similarly for {F~{. Once the {F!,} are de
termined, the shifted zeros {r~f follow immediately 
from (21). (In actual computations, we need only rh '(u'): 
hence, it is not necessary to find {r~} explicitly.) 

The final step in the solution is to calculate the residues 
in (15). The result is 

(23) 
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Up = [exp (_ (f3p + f3o)a In2)] 2 (1 + f3o/f3 p}(l + f3o/f3- p) 
1T (f3p + (30)(1 - f3p1(30) (- l/f3p}(l - f3p1f3_ p) 

( 1 + t pi f3n) 
x PI (Ip I) (1 + f30/ f3 n}(l + f30/ f3- n) n=l n 0 TI (1 - f3 ply n}(l + f30/ f3 )(1 + f30/ f3- n) 

n=l (1 - f3/f3 n)(l - f3/f3- n) (1 + E F~(- f3o)n) n=M+l (1 + f30/Yn}(1 - f3p/f3 n)(l - f3p/f3- n) 

for p=±1,±2, ... , Ipl <M. 

The notation n (IPI) indicates that the pth term is deleted. 
The reflection coefficients {A p} and transmission coeffi
cients {DpJ are related to {uP} by (10). This completes 
the analytical solution to the problem. 

IV. NUMERICAL RESULTS AND DISCUSSION 

Machine computations for the coefficients of the propa
gating modes are carried out for parameters a and h 
with ranges 0 < a < A and 0 < h :s A. For these ranges 
there can exist, at most, two reflected and two trans
mitted beams exterior of the array. For computation, 
the infinite product terms were truncated at 200, which 
was found to be more than adequate. The question of how 
many zeros to shift was answered using two criteria. 
The first was convergence of the coefficients A p and D p 

as the number of zeros shifted was increased. Second 
was that of power check; namely, 

p(i) =p(r) + p(t). (25) 

Calculating the values of p (r) and p (t) , and normalizing to 
p (i) gives (25) to be 

1 = ~"IA 12 + ID 12) (~)Il (26) PL p p 1f301~' 
where the index p is for the propagating modes only. 
Table I shows convergence of the coefficients A_I and 
D_l for 80 = 75 degrees. The coefficients Ao and Do 
were found to converge slightly faster in most cases, so 
that Table I represents a worse case. Generally speak
ing, a shift of eight or nine zeros is sufficient. Power 
checks were conSistently good for six or more zeros 
shifted. The nine zeros shifted case in Table I represents 
a power check of better than 0.1°10. 

Figure 2 presents the dominant beam coefficient for a 
closely spaced array with a = O. 25A, and h = 1A. It is of 

1.0 

0.9 

0.8 

w 
0.7 Cl 

:::J 

>::: 0.6 
--' 
CL 
::;; 0.5 « 

::;; 0.4 
« 
w 0.3 en 

0.2 

0.1 -7T 

0 
0 10 20 30 40 50 60 70 80 90 

eo - ANGLE OF INCIDENCE IN DEGREES 

FIG. 2. Beam amplitude and phase vs incident angle for h = lA and 
a = 0.25'\ (- - - - PHASE --MAGNITUDE). 
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TABLE 1. Convergence of the coefficients A.I and D.I.a 

Number of Zeros Shifted M A.I D.I 

1 0.0691 0.1989 
2 0.0867 0.2121 
3 0.0983 0.2162 
4 0.1039 0.2185 
5 O. 1071 0.2198 
6 O. 1097 0.2208 
7 0.1101 0.2211 
8 0.1103 0.2213 
9 0.1103 0.2214 

a The parameters used for this computation are a = 0.75'\, 
h = lA, and 80 = 75'. 

(24) 

interest to note that in the limiting case h ..... co, the mag
nitude of the reflection coefficient is given by 

(27) 

provided a < O. 50A, which is plotted in Fig. 2 by a dotted 
line. The difference between the cases with finite h and 
infinite h is very small when the incident angle 80 is 
close to broadSide. This is due to the fact that the junc
tions at x = 0 and x = h in Fig. 1 are nearly transparent 
for small I 80 I. 
In Fig. 3, we use h = 0.5A and a = 0.75.\, which allows 
the (- 1) beam to propagate beginning at the angle 
80 = 19.5°. Note that at the grazing angle of the (- 1) 
beam, the scattered modal coefficients exhibit discon
tinuous derivatives, as expected. The transmitted power 
in the main beam drops from 100"10 at 80 = 0° to 73°10 at 
80 = 60°, while the transmitted power in the (- 1) beam 
is roughly 10"/0 for 30" < 80 < 60°. 

To demonstrate the dependence of h, we keep a = 0.75.\ 
and incerase h to 1.\. The result, presented in Fig. 4, is 
quite different from that in Fig. 3. A particularly in
teresting phenomenon occurs at 80 = 13.0°. At this inci
dent angle, lAo I = 1 and IDo I = 0 with the phase of Do 
undergoing a jump of 1T, which implies a total reflection! 
Thus, if the structure is used as a microwave lens with 
a > 0.50.\, a ''blind spot" for the transmission is ob
served in the angular region where no propagating dif
fracted beams exist. 

The total reflection phenomenon discussed above sug
gests the existence of a modal solution to the open struc
ture formed by adding an identical set of strips at a dis
tance x = - (h + Z) in Fig. 1. A direct computation of the 
modal solution to this structure is very difficult. How
ever, by making use of the solution in the present paper, 
a simple and elegant solution can be described. Con
sider a plane wave traveling in the direction f) c with 
field given by 

HP) = exp[ik(x cosec + Z sineJ]. 

The reflected field from the junction at x = 0 may be 
represented by 

(28) 
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FIG.4(a) Beam amplitude vs incident angle for h = 1;\ and a = 0.75;\; (b) Phase vs incident angle for h = 1A and a = 0.75;\ 

HP> :=: A O exp[ik(-x cosBe + z sinBe )] 

+ (higher-order space harmonics). (29) 

Since we are interested in the interaction between the 
junctions at x:=:O and x:=:- l, the attenuating (assuming 
B c is less than the grazing angle of next space harmonic) 
higher-order space harmonics may be neglected provi
ded that kl is large. The reflected field in (29) is scat
tered again at x:=:- 1 and yields a scattered field 

HP> :=: A~ exp(i2kl cosBc) exp[ik(x cosBe + z sinBc ]' 

(30) 

Now, let us assume that Be is the critical angle for the 
occurrence of total reflection. Thus lAo I :=: 1, or 

(31) 

where ~ is the phase angle of Ao, and may be computed 
from the solution presented in this paper. 

The condition for a self-consistent modal solution is 
that HP) :=: HP) or by making use of (31) in (30) and 
(29): 

exp[i(2~ + 2kl cosBc)] :=: exp(± i2n), 

Solving for kl gives 

n:=: 0,1,2,···. 

kl:=: (± 2n7T - ~)/cosBe' n:=: 0,1,2,···. (32) 

Thus, for a given kh and ka, there may exist a total re
flection angle Be' In such a case, one may use (32) to 
determine kl for the existence of a modal solution of the 
type described above. The modal field variation can be 
obtained by combining (28) and (29) and the result is 

1 ikz sine 
H y ~ coskx cosBe - 2~e e, for - I < x < O. 

(33) 
If sinBe < 1 (or Be real), the modal field is a fast wave 
propagating along the z direction. If sinBe > 1 (or ()c 

imaginary), the modal field is a slow wave, and its trans
verse variation is no longer oscillatory. The modal 
field outside the two sets of parallel strips, i.e., 
x < - (h + l) or x > h, is of evanescent nature since the 
only propagating beam has an amplitude Do :=: O. Thus, 
the energy carried in this mode is entirely confined be
tween the two sets of parallel strips. This suggests the 
possibility of using this structure as a resonator. To 
form a resonator, we may close the gap between two 
sets of plates at z = 0, and z = d such that 9 

kd sinB e = nrr, n:=: 1,2,3, .... (34) 

For a ray impinging on the sides at x = 0 and x:=:- I 
with an angle very close to Be' it is nearly totally reflec
ted with very small diffraction loss. Suppose a source 
or an active medium is placed in the resonator; a steady 
oscillation will result when the diffraction loss is 
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balanced by the gain from the source or medium. The 
apparent advantage of such a resonator over a conven
tional open resonator 10 , 11 formed by two plates (at 
z = 0 and z = d), lies in the fact that the two sets of 
strips at x = 0 and x = - 1 perform a further "filtering" 

11, F. ('alison and A. E. Heins, Q. AppL Math. 4, 113 (1947). 
2F. BerL, Proc. IEEE 98 (Pt. III), 47 (1951). 
'See, e.g., R. E. Collins, Field theory of guided waves (McGraw-Hili, New York, 

1%1). 
4 E. Meisler, l. Angew. Math. Mech. 55, T57 (1965). 
'D. S. Jones, Proc. \{. Soc. A 217, 154 (1953). 
"R. Mit tra and S. W. Lee, Ana/ytica/techniques in the theo~1' ofguided waves 

(Macmillan, New York, 1971). 
. / R. Mittra and S. W Lee, J. Math. Phys. (N.Y.) II, 775 (1970). 

J_ Math. Phys., Vol. 13, No. 12, December 1972 

function for the field in the resonator, and, consequently, 
the resonance frequencies should be even more sparse. 
However, we emphasize that this resonator is only a 
preliminary idea, and its merit can be ascertained only 
after more quantitative analysis and experimental work. 

R R. Mittra, S. W. Lee, and G. F. Van Biaricum, int. J. [·.ng. Sci. 6. 395 t IlJ6X). 

y More orecisely, kd sin Be ~ n1T + p, where Ip 1 ~ I. The real and imaginalY parts 
of p are related to phase shift and loss factors of the resollator respectively. See 
Refs. 10 and II. 

10 L A. Vainshteill, lh. Eksp. Te(H. Fiz. 44, 1050 (1963) ISov. Pltys. JETP 17, 
709 (1'163)1. 

« L A. Weinstein, The theury ofdi/fraction and factorization method (Golem, 
Boulder, Colo., 1969) . 
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The problem of finding central and L '-dependent potentials, acting among spinless particles, from the knowledge of the 
S matrix as a function of angular momentum at a fixed energy is studied. The Newton method for central potentials is 
generalized to this case, and it is shown that phase shift information at fixed energy is not enough to give us both the central 
and the L' -dependent potential. 

1. INTRODUCTION 

A systematic method for the construction of the scatter
ing potential from the knowledge of the S matrix at one 
energy as a function of the angular momentum (inverse 
scattering problem at fixed energy) has not only direct 
physical significance; but it also gives us a better under
standing of what kind of information on the potential we 
can obtain from scattering experiments. The first re
sults for the inverse scattering problem at fixed energy 
for central potentials were reported by Newton, 1 and 
this work was then extended by Sabatier.2 The inverse 
scattering problem for LoS potentials has been consi
dered by Sabatier3 and for the tensor force by Hoosh
yar,4 but some work still remains for completely solv
ing these two inverse problems. On observing the simi
larities between the methods used for attacking the men
tioned inverse scattering problems, one may wonder if a 
similar method can be used for solving the inverse scat
tering problem at fixed energy for L2-dependent poten
tials. To make the problem simple, in this work we only 
consider the inverse problem for L2-dependent poten
tials for spinless particles. In other words, the radial 
Schrodinger equation which we would like to consider 
should have the following form: 

r2/~ + k2 - Vc(r) -l(l+ I)V2(r~ <I>/(r) \dr2 'l 
= 1(Z + 1)<I>/(r) (1.1) 

where Vc(r) is the central potential, V~(r) is associated 
with the radial-dependent part of the L -dependent poten
tial, and <I> / is the regular solution to Eq. (1. 1). The pro
blem which we are interested in solving is to see what 
can be said about V c and V 2 if the asymptotic behavior 
of <I> / is given for all values of the angular momentum at 
a fixed energy. We would like to point out that we are 
not interested in this problem only because of our mathe
matical curiosity, but also because the Schrodinger equa
tion for tensor force can be put into a matrix form re
lated to the above equation, and one needs to know how to 
solve the above inverse scattering problem if one wishes 
to consider the inverse scattering problem at fixed 
energy for Nilsson potentials. 5 

Section 2 is devoted to the problem of connecting the 
phase shifts to the potentials V c and V 2 through an auxi
liary function which is the solution to the analog of the 
Regge-Newton equation. l . 6 For finding this analog of 
the Regge-Newton equation, we found it to be more con
venient to rewrite Eq. (1. 1) in the following form: 

r2 (::2 + k2 - Vl(r) -A2V2(r)) if A(r) = (A2 - ~) 1J!A(r) 

(1. 2) 

whe re A = 1 + t, V 1 = V c - t V 2, and 1J! A = <I> /. Also we 
noticed that the analog of the Regge-Newton equation 
that one may obtained for Eq. (1. 2), is such that it can be 
used most conveniently if we assume that V 2 is an arbi-

1931 

trary but known potential. In this work we have not con
side red what one can find from our analog of the Regge
Newton equation if the above assumption is not made. 

In Sec. 3 we give an example to demonstrate the method 
for the construction of V 1 in terms of V 2 and the phase 
shifts at a fixed energy. 

2. THE PROCEDURE 

In this section we shall develop the analog of Newton's 
method l for the Schrodinger equation where an 1(1 + 1)
dependent potential is also present, that is, Eq. (1. 1). 

As it was stated in Sec. 1, the potential V 1 (r) is the po
tential which we are to find from the information on the 
phase shifts, and potential V 2 ( r) is assumed to be arbi
trary but given. In order that our procedure work, we 
also need the following condition to be satisfied: 

1 + r 2V2(r) ~ 0, for r ~ 0, 

J: dr 1[1 + r
2
V:(r)]l/2 -11 < rfJ, 

(2.1) 

and z2V2(Z) should be an entire function of z. 

With above conditions satisfied the following functions 
can be defined 7 : 

r [1 + S2V2(S)]1/2 - 1 
a( r) = J ds -------=---

o s 
b(r) = r exp[a(r)], 

F(r) = [b(r)]-l/2 and c = lim b(r)/r. (2.2) 
r .... oo 

Following the method developed in Ref. 1, we consider 
the spherical Riccatti - Bessel functions U A(klr) == U A (r), 
which are solution of the following differential equation: 

k 
with kl = -. 

C 

Next we define the input function!(r,r') as 
(2.3) 

(2.4) 

where the constants d A are arbitrary for now and are to 
be found later from information on phase shifts, and for 
our purpose, the set S is assumed to contain only the 
half-integers. 

The analog of the Regge-Newton equation is then defined 
by 

K(r,r') = F(r)!{b(r),r') - fer) ds s-2K(r,s)!(s,r'). 
o (2.5) 

Using the standard arguments 2 concerning the Fredholm 
determinants of Eq. (2. 5), A (z), we notice that A(z) is 
analytic in the domain of analyticity of b(z) and the 
zeros of A(z) are poles of K(z, z'). It then follows that in 
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the domain of analyticity of K(z, z'), t.(z) ;>' 0, (2.5) has a 
unique solution and the homogeneous version of Eq. (2. 5) 
has only the trivial solution. This fact, together with the 
performance of some tedious differentiation and integra
tion by parts, enables one to come to the conclusion that 

if 

+ k2 - V1(r) - t V2(r~ K(r,r') 

== [1 + r 2V2(r)]r,2 (~ + kI)K(r,r') 
dr,2 

V1(r) == k2 -bkI -t V2 

(2.6) 

(
.. d· . d ) + F-1 F- dr[bb-2K(r,b(r»] -bb-2

dr
K(r,b(r» • (2.7) 

Choosing Eq. (2. 7) as the definition of VI (r) in Eq. (1. 2), 
using Eq. (2. 6) and performing some differentiation and 
integration by parts, we can show that the regular solu
tion lJ1,>.. (r) of Eq. (1. 2) can be written as 

j b(r) 
lJ1,>..(r) ==: F(r)u,>..[b(r)] - 0 ds s-2K(r,s)u,>..(s). (2.8) 

Since we have assumed that the asymptotic behavior of 
lJ1,>.. is known (that is, the phase shifts), then it follows 
that K( r, s) in Eq. (2. 8) should have been so chosen so 
that it can give us the correct behavior for lJ1,>..' In other 
words, Eq. (2. 8) should be used in such a way that it 
gives us the set d>-- which corresponds to the desired 
asymptotic behavior of lJ1,>... In order to achieve this, let 
us substitute (2.4) in Eq. (2. 5) and make use of (2. 8) in 
order to get 

K(r,r') == ~ lJ1,>..(r)d,>..u,>..(r'). 
AES 

(2.9) 

Substituting Eq. (2. 9) in Eq. (2. 8) gives us the desired 
relation 

with 

lJ1,>..(r) == F(r)u,>..[b(r)] - ~ lJ1 y(r)dyL A.y(r) 
'>"ES 

) J. b(Y) 2 () () L ,>.., y ( r :::: 0 ds s- U,>.. S Uy S • 

(2.10) 

We are interested in the asymptotic form of Eq. (2. 10), 
and because of uniform bounds of U A and lJ1,>..' which are 
shown by Sabatier8 to be of order of ,\ 1/3, we see that we 
can take the limit as r -+ 00 inside the summation in Eq. 
(2.10) if I d A I < C,\ 1/3-<, where C is some constant. With 
this assumption realized we let r tend to infinity in 
(2.10). Using the following asymptotic forms 

lim 'Ir,>..(r)==AA sin[kr-trr('\-t)+ o,J, 
y .... oo 

lim u,>..(r) == sin[k1r - trr('\ - ~)], (2.11) 
Y .... OO 

lim b(r) == lim cr, lim F(r) == c-1/2, 
'Y-OO 1"-+00 1"_00 

writing the sine function in terms of exponentials, sepa
rating the coefficients of e ikr and e- ikr , and equating the 
coefficients separately, we find that 

A ' iO,>.. == 1 - "" L' (oo)d' A' e iOY e i(1[/2)(,>..-y) 
A e y~ A,y Y Y , 

where 

d'A == k1d A, A'A:::: c1/2A,>.. 

and 
L ', (00):::: sin[(y -'\)(rr/2»)/(y2 _,\2). 

A,y 
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(2. 12) 

Equation (2.12) is identical with Eq. (17) of Ref. 1 and 
the question of finding the d A from the phase shifts, via 
Eq. (2. 12), becomes identical with the similar problem 
which arises when one tries to do the inverse problem 
for only the central potentials, with no l(l + I)-depen
dent potentials. This problem has been considered in de
tail by Newtonl and Sabatier,9 and they have shown that, 
in general, one can find sets of d,>.. corresponding to a set 
of phase shifts, if the phase shifts tend to zero suffi
ciently rapidly with increaSing value of the angular mo
mentum. 

Having found a set of d A corresponding to a given set of 
phase shifts, we can define the input function for (2. 5) 
from Eq. (2.4). From Eq. (2. 5) we can then find K(r,r'), 
from which, using Eq. (2. 7), we can find the potential 
V 1 ( r). Clearly the construction of V 1 ( r) then assures us 
that this potential, Vl(r), together with V2 (r), is such 
that the wavefunction 'Ir A( r) will have the desired asymp
totic behavior. 

3. EXAMPLE 

For the purpose of illustrating the method let us assume 
we are given a set of phase shifts such that the corres
ponding d A are found to be 

d A == 0 for all ,\;>' y, 

d y ;>' 0, 
(3. 1) 

Since V 2 is arbitrary in this case, let us choose it to be 

V2(r) == V2(r) + 2V(r)/r, 

where 

V(r) == we-Y 

(3.2) 

and w is some constant. Clearly V 2 will satisfy condi
tions of Eq. (2.1), and the defined functions a,b, c and F 
are then given as 

a(r) == w - V(r), b(r) == cre-v(r), c ==: eW, 

and F(r) == b- l / 2[V(r) + 1/r]-l/2. 
(3.3) 

From Eq. (2. 10) it follows that 

'lry(r) == F(r)u y[b(r)]![1 + dyLy,y(r)]. (3.4) 

It then follows that 

lJ1
A
(r) == F(r) [uJb(r)] - Uy[b(r)]dyLA,y(r)]. (3.5) 

1 + dyLy,y(r) 

Substitution of Eq. (3.4) in Eq. (2. 9) implies that 

K(r,r') = F(r)uy(r)dyuy(r')/[l + dyLy,y(r)]. (3.6) 

Knowing K(r,r /), one can find potential V 1(r) from Eq. 
(2.7): 

V1(r) == [1-e-ZV (1 + rV)2]kZ -ivz + :HrzV~ -rzVz 

+ 2VZ(r2 - 1) + 6V]!(1 + rZVz) 

- 2e V(1 + rV)[ - G(r) 

+ (V + l/r)G(r)]/crz, (3.7) 

where 
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From our construction procedure it follows that \lI A' 

given by Eq. (3. 5), is the regular solution to Eq. (1. 2) if 
the potential V 1 and V 2 in that equation are given by 
Eqs (3.7) and (3. 2). If we let r tend to infinity in Eq. 
(3.5), we find that the phase shifts associated with the 
potentials V 1 and V 2 have the following form: 

(3.8) 

One should notice that when V2 = 0, kl = k, and, if we 
choose units such that k = 1, then the example which we 
have considered is the same as the one in Ref. 1. As ex
pected, the results become the same. 

From the construction procedure and the results of our 
example, we observe that in a scattering experiment in 
which Eq. (1. 1) is the governing equation, we cannot de-
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duce both the central potential V 1 and the L2 -dependent 
potential V 2 from the information on phase shifts of all 
angular momenta. In other words, the information on the 
phase shifts gives us only a relation between the central 
and L2-dependent potentials. In this work we have been 
able to give a method for finding the central potential 
V 1 if the L2 -dependent potential V 2 and the phase shifts 
at a fixed energy are given. 

We also find it interesting to point out that for the L2-
dependent potential in our example, Eq. (3. 2), the phase 
shifts associated with this potential and V 1 tend to zero 
for large values of the angular momentum. This obser
vation is not a priori obvious and suggests that the 
method could also be used to study the asymptotic beha
vior of phase shifts associated with L2 -dependent poten
tials. 
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A theory of elastic deformations of general relativistic systems is presented. The theory is derived from a generalized 
Hooke's law. An important feature of this theory is that its classical limit corresponds to the classical elasticity theory 
of prestressed materials. A perturbation description of small deformations is developed and applied to the test body 
case. For the first time, the strain·curvature equation for an elastic test body interacting with a gravitational wave has 
been derived from a complete theory. The semi·classical work of Dyson, showing the interaction of a gravitational wave 
wIth the mhomogenelltes of the shear modulus. is rederived and placed within the framework of general relativity. The 
theory presented is quite comprehensive in scope and applicable to fully relativistic situations such as the elastic 
behavior of neutron stars. 

1. INTRODUCTION 

Elastic phenomena in the relativistic domain of influence 
have recently come into prominence. The most notable 
of these is Weber's observation 1,2 of the elastic re
sponse of an aluminum cylinder to gravitational radia
tion. Along the same lines are investigations3 ,4 of the 
excitation of the earth's and moon's vibrational modes 
by gravitational waves. These gravitational radiation 
experiments do not directly involve the relativistic pro
perties of elastic bodies, but rather their interactions 
with relativistic fields. However, it has been argued5 

that the crusts of neutron stars are in elastic states. If 
so, they would manifest full relativistic elastiCity in 
which the velocity of sound waves is comparable to the 
velocity of light. 

Relativistic theories of elastiCity split into two cate
gories characterized by their formulation of Hooke's 
law: 
(i) Rate of change of stress is proportional to rate of 
change of strain.6 ,7 

(ii) Stress is proportional to strain.S,9 In the first case, 
the rate of strain is formulated in terms of the deriva
tive of the space-time metric along the four-dimen
sional hydrodynamical streamlines, but the concept of 
strain itself is not introduced. Modern terminology 
would classify such treatments as theories of hypoelas
ticity. In the second category, an auxiliary spatial metric 
is introduced. This metric describes the equilibrium 
separation of the streamlines. The concept of strain is 
formulated in terms of the difference between the equili
brium separation and the actual separation determined 
by the space-time metric. This description corresponds 
to classical elasticity theory. 

We adopt formulation (ii) of Hooke'S law as the basis of 
our approach. In particular, we base our treatment very 
closely upon the work of Rayner,S in which the auxiliary 
metric describes a state of rigid motion of the elastic 
body. The auxiliary metric is to be regarded as part of 
the thermodynamic specification of the equilibrium state 
of the body. An alternative approach9 which has been 
taken introduces the auxiliary metric by imagining small 
portions of the body removed to a distant stress-free 
region where their natural state can be examined. The 
auxiliary metric is then defined in terms of the equili
brium separations in the natural state. The conceptual 
awkwardness of this approach is that the natural state 
may not be in the solid phase, but instead a liquid or 
even an expanding gas with no finite equilibrium config
uration. Such is likely to be the case with the elastic 
material in a neutron star. 
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Rayner's statement of Hooke'S law does not include the 
possibility of initial stresses in the equilibrium state of 
the body. Such stresses are likely to be important to 
the elastic properties of bodies of astronomical size. In 
Sec. 2, we extend Rayner's theory to conform with a gen
eralized Hooke's law of the form: 

(iii) Stress minus equilibrium stress is proportional to 
strain. 

Our formulation of a general theory of elastiCity is pri
marily for the purpose of a starting point to describe 
small elastic deformations. It is in this case that rela
tivistic elasticity theory can be expected to be most 
meaningful and applicable. We develop a general pertur
bation theory in Sec. 3 based upon a rigid equilibrium 
space-time and an associated one-parameter family of 
space-times representing elastic motion. We will not 
apply the results of Sec. 3 to fully relativistic systems, 
such as neutron stars, here. Instead, as a check on these 
results, we proceed in Sec. 4 to derive the test body limit 
for elastic perturbations. In this limit, our results are 
in essential agreement with other works describing the 
interaction of elastic test bodies with gravitational 
waves. Furthermore, in the nonrelativistic limit we find 
agreement with the classical theory of elasticity of pre
stressed materials. 10 -12 To simplify the discussion we 
will treat adiabatic motion only. Effects of damping may 
be included using the techniques of relativistic viscosity 
theory. 

2. GENERAL THEORY 

In order to formulate an energy-momentum tensor 1'''13 
appropriate to the description of an elastic body, we 
begin with the standard hydrodynamical description. (In 
this section, we use a "bar" over symbols representing 
physical quantities to facilitate later notation). The tra
jectories of the material particles trace out world lines 
with unit 4-velocity iI" 

(2.1) 

so that the metric has the natural decomposition13 

(2.2) 

where the spatial part )I"B satisfies 

YcxBUB = O. (2.3) 

The tensor )I" B , 
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satisfies the idempotent relation 

and acts as a spatial projection operator on tensor 
fields. The energy-momentum tensor takes the usual 
form 

(2.4) 

where the energy density p and the stress tensor PaB are 
measured in the local rest frames, 

(2.5) 

Following Rayner,S we now introduce an auxiliary 
spatial metric r a 8 which imposes a rigid structure on 

o 
the three-dimenSional manifold of trajectories. It satis-
fies the orthogonality condition 

YaaU 8 == 0 (2.6) 
o 

and has vanishing Lie derivative along the trajectories 

.,craB == O. (2.7) 
u 0 

This auxiliary metric describes the equilibrium dis
tances between neighboring streamlines. For physical 
purposes, we may adopt the point of view that in the in
finite past the body was in an equilibrium state satisfy
ing the conditions of Born rigidity with initial conditions 

raB -7 raB' 
o 

Note that the nondegenerate metric 

(2.8) 

g:B == uauB + raB (2.9) 
o 

satisfies the conditions of rigid motion for all times. 
However, this latter metriC, while of mathematical 
interest, cannot be interpreted as an equilibrium space
time metric (see Sec. 3). 

The strain tensor Sa 8 is defined by 

As a generalized statement of Hooke'S law, we now 
postulate that the stress tensor is given by14 

(2.10) 

(2.11) 

where laB are the stresses present in the un strained 
equilibrium state and the second-order adiabatic elastic 
coefficients AaaliV have the Voigt symmetry 

(2.12) 

These quantities refer to the local rest frame, i.e., 

(2. 13) 

(2.14) 

In this formulation of Hooke's law, both the background 
stress and the elastic tensor give rise to stresses which 
are linear in the strains. The justification for this is 
given by the correspondence with the classical theory 
(see Sec. 3). Note that the effective elastic tensor 

4gv(a]yB)/l + AaB/lv 
o 

does not possess the Voigt symmetry. 

The complete thermodynamic description of an elastic 
body would include an equation of state for the equili
brium energy density and stress, the details of which 
vary from system to system. Here we implicitly regard 
the equilibrium properties as included in the specifica
tion of the system. Equation (2.11) then gives the addi
tional stresses in nonequilibrium configurations. The 
change in energy density due to elastic deformations 
follows in the usual way from the conservation equation 

(where Va denotes covariant differentiation with respect 
to g a8)' The full set of equations of motion is given by 

(2.15) 

The Einstein equations are necessary to complete the 
description. Outside the body, the Einstein tensor 
vanishes, and inside we have 

(2. 16) 

On the surface, we have the boundary condition that the 
normal component of stress vanishes: 

~v nV == o. (2.17) 

Equation (2. 11) is a realistic description of the elastic 
stresses only when the higher-order elastic coefficients 
are not important as in the case of small strains. This 
is the situation for which relativistic elasticity theory 
is most relevant and which we now treat by perturbation 
methods. 

3. ELASTIC PERTURBATIONS 

Elastic motion will now be developed as a perturbation 
of an equilibrium system undergoing Born rigid 
motion.1 5 .16 In practice, static or stationary equilibrium 
states are more often of interest; but we will defer such 
specialization until Sec. 4. Born rigidity is the neces
sary and sufficient condition for strain -free elastic 
motion and is, therefore, the most natural choice for an 
elastic equilibrium state. In general relativity, Born 
rigidity imposes much weaker restrictions on the motion 
of a body than in special relativity, so the equilibrium 
system has conSiderable dynamical freedom. 

The hydrodynamical description of the equilibrium state 
follows from specializing the conditions of Sec. 2 to the 
strain-free case. We use the same symbols for physical 
properties of the equilibrium state as in Sec. 2, but with
out a "bar". Thus, 

UaU a == 1, (3. 1) 

gaB == UaUa + YaB' (3.2) 

'YaB u B == 0, (3.3) 

TaB == PUaUa - ~a, (3.4) 

Pai3 UB == 0, (3.5) 

Gas == - (87TGc 4)T"'i3' (3.6) 
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and 
(3.7) 

The necessary and sufficient condition for rigid motion 
is 

(3.8) 

The kinematic properties of the rigid body are deter
mined by the acceleration vector17 

and the rotation tensor 

WaS := U(o:;Bl- a(auBl 

with 

(3.9) 

(3.10) 

(3.11) 

In addition, the various dynamical corollaries of rigid 
motion apply, for instance 

.cp = O. (3. 12) 
u 

Now consider a one-parameter family of elastic sys
tems S(E). For each value of E, the system consists of a 
four-dimensional manifold M(E) with space-time metric 
g~"(E) and physical properties as described in Sec. 2. 
We denote the relevant tensor fields on M(E) by UO:(E), 
T"B(E), etc. For E = 0, we choose a rigid system as des
cribed above. In that case, we simply write 5(0) = 5, 
ua(O) = u a, g~"(O) = gp."' etc. 

In order to compare the systems S(E) with 5 we must 
map them all onto a common manifold, which we choose 
to be M = M(O). There are as many ways to do this as 
there are one-parameter families of diffeomorphisms 
of M. This is the gauge freedom of general relativistic 
perturbation theory. However, there is one natural class 
of gauges for this problem, namely the comoving gauge 
in which corresponding streamlines are mapped into 
each other. We can picture this in the following way. 
Asymptotically, in the infinite past, all systems S(E) are 
chosen to satisfy the same initial conditions as the rigid 
system 5. This induces a natural identification of 
material points and, consequently, an identification of 
streamlines in the manifolds M( E). The remaining gauge 
freedom corresponds to the ways in which identified 
streamlines can be mapped into each other. We restrict 
this by requiring that unit proper time intervals along 
the streamlines in M(E) be mapped into unit intervals 
along the streamlines of M. The resulting gauge trans
formation group has infinitesimal descriptors 

where f is constant along each streamline, 

f;o:u a = O. 

The following conditions are immediate consequences of 
the comoving gauge: 

YaS(E) = YaB' 
o 
UO:(E) = u a , 

and 

(3.13) 

(3.14) 

(3.15) 

In addition, because we are considering purely elastic 
perturbations, we take 
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(3. 16) 

Since the parameter E can be arbitrarily rescaled, with
out loss_of generality, we choose E = 1 for the perturbed 
system 5 we wish to treat, so that S = 8(1). Then, to 
lowest order in the perturbation, quantities in S are re
lated to their counterparts in 8 by the rule 

dA(E) I -~A := -d-- = A - A + higher-order terms, 
E <=0 (3.17) 

where A symbolizes a generic tensor field. The kine
matic properties of the perturbation are given by the 
velocity 

and the strain 

They satisfy 

and 

(3. 18) 

(3.19) 

(3.20) 

(3.21) 

where the projection operator ..L projects every free 
index with 

(3.22) 

The perturbation of the metric is given by 

(3.23) 

In the comoving gauge, the streamlines of an oscillating 
elastic system coincide with the streamlines of the un
perturbed rigid system. As a result, there is no kine
matic concept of displacement from equilibrium as in 
classical elasticity theory. The acceleration due to the 
perturbation satisfies 

(3.24) 

Consequently, for cases of practical interest ~uo: will 
normally be nonzero, even though ~uO: vanishes because 
of the gauge conditions. This is why the rigid metric if:B , introduced in Eq. (2. 9) of Sec. 2, is not suitable for 
describing the unperturbed system. 

Hooke's law for small perturbations takes the form 

~PaB = 48"Ca Ps)v + AalVSp.v, 

where 

(3.25) 

(3.26) 

The complete set of dynamical equations governing the 
perturbation are obtained by applying the ~ operator to 
Eqs. (2.15)-(2.17). A collection of useful formulas and 
results are presented in Appendix A. 

The perturbation theory developed above is applicable 
to fully relativistic systems for which the equilibrium 
space-time is curved. We do not treat such applications 
here, but proceed to compare the test body limit of the 
theory with other descriptions of elastic test bodies 
interacting with gravitational waves. 
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4. TEST BODY LIMIT 

We now restrict our considerations to the test body 
limitlB in which the elastic system does not give rise to 
space-time curvature. In addition, we restrict the 
streamlines of the material points in the body to be non
rotating geodesics. 19 Thus we have 

gjJv~'T/jJv' (4.1) 

with 'T/ JJV the Minkowski metric, and the trajectories 
satisfy 

UjJ;U = WjJU = ajJ = O. (4.2) 

The test body equation of motion (A14) becomes 

p(vjJ + SuI') + (fl.pujJ + PjJcxv cx )' - (AjJOCXBScxB);o 

- PCXB(2SjJCX;B - SCXB;jJ + S;cxOjJB) = O. (4.3) 

The dynamical equations of the perturbation theory 
developed in Sec. 3 now allow us to relate the physical 
observables: the strain of the elastic test body and the 
curvature of the gravitational wave. However, the tradi
tional elastic equation, the equation of motion of the de
formation itself, requires the introduction of the concept 
of displacement from equilibrium. This must be done in 
a gauge different than the comoving one. 

A. The comoving gauge 

Proceeding in the comoving gauge of Sec. 3, the ujJ com
ponent of Eq. (4.3) is 

(4.4) 

which gives the rate of change of density, where the first 
term on the right is due to the expansion of the material 
and the second term is due to the work done by the 
stresses. 

In order to relate the change in strain of the test body 
with the curvature of the gravitational wave, we use the 
spatial projection of the equation of motion (4. 3) and the 
kinematical relation given by the perturbed Ricci 
identity (A10). Restricted to the test body, Eq. (AlO) re
duces to 

(4.5) 

where we have contracted the equation with U O and pro
jected the free indices. Restricting the test body equa
tion of motion (4. 3) to the case of negligible initial 
stress, we find by projection 

(4.6) 

In the comoving gauge vI' has no direct physical inter
pretation. Geometrically, it represents the difference 
between rest frames of a material point in the equili
brium system and its vibrating counterpart, both having 
the same streamline. In order to obtain a relationship 
between physical observables, vI' is eliminated by dif
ferentiating Eq. (4. 6) and substituting it into Eq. (4. 5). 

We find 

1- {S"jJU - p-1V(jJVo[Av)oaBSa/ll 

+ p-2p ;(I'Vo [Av)oaBScxBl + fl.Rl'cxvouauo} = O. (4.7) 

This describes the response of an elastic test body, such 
as Weber's aluminum bar, to incoming gravitational 
waves. The second term of (4. 7) arises from the usual 
elastic restoring force and the third term from inhomo
geneities in the density of the body. The last term re
presents the gravitational tidal force. 

B. The displacement gauge 

We now explicitly introduce the deformation in order to 
obtain its equation of motion. Once again we compare 
the systems S(E} with S, where S is now the flat equili
brium system of the test body. However, we no longer 
choose the comoving gauge in mapping S(E) and S onto 
the common manifold M = M(O). Instead, we introduce a 
vector field ~I' in M to represent the elastic displace
ment and map the streamlines of S onto the displaced 
streamlines of S. This gives 

(4.8) 

where a prime denotes quantities in the displacement 
gauge. As in Sec. 3, we choose E = 1 for the perturbed 
system. In this gauge the first order perturbation 
quantities in S are related to their counterparts in S by 

dA'(E} I -
fl.'A: = --- = A' - A + higher-order terms, 

dE FO (4.9) 

for a generic tensor field A. Quantities in the displace
ment gauge are related to quantities in the comoving 
gauge by 

A' = A -.cA g , (4. 10) 

as exemplified by the gauge transformation of the metric 
tensor. For further discussion of this point see Ref. 20. 
Equation (4.10) then relates the operators fl.' and fl. by 

fl.'A = fl.A -.cA 
g 

For the perturbed metric 

we use Eq. (3. 23) to obtain 

(4.11) 

(4.12) 

From the U U component and from the projection of (4. 12), 
we find, respectively, 

(4.13) 
and 

(4.14) 

It is evident at this stage that the quantities v jJ and S JJU' 

which describe the kinematic properties of the perturba
tion in the comoving gauge, can be replaced by combina
tions of ~jJ and h' JJU in the displacement gauge. Rather 
than maintain complete generality in the equations of 
motion, we now restrict the gauge freedom in order to 
obtain a clear interpretation of ~jJ. 

We demand the radiation gauge condition 

h' jJuu" = O. (4. 15) 

Contraction of Eq. (4.12) with ujJU U results in 
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(4.16) 

In the radiation gauge, ~MUM is constant, according to 
Eq. (4. 16), so that without loss of generality we choose 

~MUM = O. (4.17) 

Equations (4.13) and (4.14) become 

(4.18) 

and 
(4.19) 

Here v
M 

can be interpreted as the velocity of the dis
placement ~M orthogonal to the streamlines. We use 
Eqs. (4.18) and (4.19) to rewrite the equation of motion 
(4.3) of the displacement. The UM component gives 

(t.p)' = - p(~ M:M + hrh'MV)' - paB(~a:B + ih' aB)' (4.20) 

for the rate of change of density, and the spatial projec
tion gives 

(p~M + PMa~a)' + .l(ipaBh' aB: M) 

- [AMaaB(~a:B + ih' aa) + paah'Ma + iPMa71aBh~B 
- £PMa] = 0 (4.21) 

<, :a ' 

where we have used the equilibrium condition paB: B = O. 

Let us now consider the case treated by Dyson of an iso
tropic body with no initial stresses which interacts with 
a p-p wave. There are only two independent elastic 
moduli, the Lame parameters, 

(4.22) 

with yMV now the negative Euclidean metric of the spatial 
hypersurfaces. The details of the p-p wave are given in 
Appendix B. Equation (4.21) now reduces to 

Pi:M - (AMaaBt ) -" h'MB = 0 '> '>a: B;a ,..: B • (4. 23) 

This shows that the gravitational interaction is between 
the wave and the inhomogeneity of the shear modulus, in 
agreement with the result obtained previously by Dyson. 4 

In order to recover the equation of motion for the strain 
tensor, we rewrite Eq. (4. 23) as 

(4.24) 

With the help of Eqs. (4. 19) and (B9), differentiation and 
projection leads to Eq. (4. 7) for this special case. 

C. The classical limit 
In the displacement gauge, Hooke's law, Eq. (3. 25), for 
small perturbations takes the form 

t.'PaB = 4S v (a P B)v + AaBMVS Mv -fPaB' 

For the contravariant version, this gives 

(4.25) 

(4.26) 

in agreement with Hooke's law for prestressed mater
ials in classical elasticity theory.10-12 

The special relativistic limit of Eq. (4. 21) is 
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(4.27) 

The term pMa ~ a is a relativistic correction to the ener
gy density due to initial stresses. In the nonrelativistic 
limit, we obtain the classical equations of motion for 
elastic deformations of prestressed materials. 

5. SUMMARY 

We have presented a general relativistic description of 
elastic deformations which extends the initial work of 
Rayner. This is based upon a generalized Hooke's law 
for prestressed materials. 

We have treated in detail the perturbations of an equili
brium system undergoing Born rigid motion. A most 
important feature of this perturbation treatment is its 
classical correspondence with the elasticity theory of 
prestressed materials. 

For the first time, the strain-curvature equation for an 
elastic test body interacting with a gravitational wave 
has been derived from a complete theory. Previous 
treatments have introduced assumptions concerning test 
body motion in an ad hoc manner. We have corroborated 
the semiclassical work of Dyson showing the interaction 
of a gravitational wave with the inhomogeneities of the 
shear modulus. This places Dyson's results within the 
framework of general relativity. 

The theory developed here is quite comprehensive in 
scope, although we have only applied it to the test body 
case. The agreement of our test body results with other 
physically reasonable descriptions leads us to believe 
that our work can be properly applied to fully relativis
tic systems. 

APPENDIX A 

Application of the t. operator, defined in Eq. (3. 17), to the 
indicated quantities leads to the following perturbation 
equations: 

Metric: 

Christoffel symbols: 

A{a} - ~(ha + h a -h ;a) 
L.> By - 2 B; y y: B By' 

= 2S a (B:y) - SBy:a 

+ uav(s:y) + vaU(B:Y) + va;(BUy) 

+ ua:(BVy) - [v(Buy)]:a. 

Riemann tensor: 

where we use the convention corresponding to 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

Ricci tensor: With the definition R MV : = RaMva , we 
have 
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and using (A3) and (A4) we find 

t:.R~v = S;~v -sa~;va-sav;~c'+ S~v;aa 

+ [u(~vv)l;aa-[vau(~1:vl'" 

-[uav(~l:v)a, 

where S: = gaBS aB . 

Curvature scalar: 

t:.R = g~vt:.R~v - h~vRI1V' 

(A8) 

(A9) 

Ricci identity: For the identity 2u V ;[pO) == uaRavpo ' 
we have 

V' o(vv;p - uat:.{~p}) - V'p(vv;o - uat:.{~J) 

+ (w ao + aauo)t:.{~p} - (w.:xp + aaup)t:.{jb} 

+ vaRvapo + uat:.Rvapo = O. 

Einstein equations: 

t:.c = - (81TCC-4)t:.T J.1v pv' 

where the Einstein tensor is defined as 

Malter tensor: 

t:. T ~v = t:.pu ~ U v + 2pu (~v v) - t:.P ~v 

with t:.P~v given by Hooke's law Equation (3.24). 

Equations oj motion: 

which can be written in detail as 

p(v~ + v w"'~ - 2S~ a'" + Su~ + v"'a u~) 
'" '" '" 

+ (t:.pu~ + P~"'va)' - (A~V"'BS"'B);v 

(A10) 

(All) 

(A12) 

(A13) 

-P"'B(2S~a;B -S"'B:~ + S:",O~B + w~Bv",-v",aBu~) 

= 0, (A14) 

where the dot is defined as the covariant derivative along 
u"': 

Boundary condit ions: 

(A15) 

'Present Address: Department of Physics, Trenton State College, Trenton, N. 
J. 08625 
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APPENDIX B 

We list the properties of h' ~v for a linearized p-p wave: 
Let the complex vector m ~ have the decomposition 

m~: =p~ + iq~ 

in terms of two real orthonormal spatial vectors P~ and 
q~, 

and 

p~q~ = m~mp = O. 

We choose m P such that 

(B1) 

where k'" is a real null vector corresponding to the pro
pagation direction of a p-p wave 

To specify the p-p wave, we take m~ and kP to be co
variant constant 

The wave is then given by 

The derivative of the scalar J satisfies 

(B2) 

(B3) 

(B4) 

(The prime of J symbolizes a derivative and should not be 
confused with the prime of h' pv.) It follows that 

and 

h' pv;p = (logJ)'kph' pv' 

The Riemann tensor is given by 

It satisfies the equation 

t:.R~",vokO=O. 

The contraction with u"'u O is useful: 

AR ex o--.!.h··' 
L.l 11 Ci Vo U U - 2 ilV-

7 A. Papapetrou, Ann. Inst. Henri Poincare A 16, 63 (1972 I. 
'e. B. Rayner. Proc. R. Soc. A 272, 44 (1963). 
'w. e. Hernandez, Phys. Rev. I, 1013 (1970). 
JOe. Truesdell and W. Noll, in Handbuch der Physik, edited by S. Flilgge 
(Springer-Verlag, Berlin, 1965), Vol. II1/3. 

II D. C. Wallace. in Solid state physics, edited by F. Seitz ef al. (Academic, New 
York. 1970), Vol. 25. 

(B5) 

(B6) 

(B7) 

(B8) 

(B9) 

12E. Glass and J. Winicour, "A geometric generalization of Hooke's law" (to 
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\lOur metric has signature - 2, and Greek indices range over 0, I ,2,3. 
I'Parentheses about indices denote symmetrization: A (am:= 1!2(A ap+A Po); 
and brackets similarly denote antisymmetrization. 

ISPor a summary of the properties of rigid motion, see F. Pirani, "Foundations 
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On the possibility of observing first-order corrections to geometrical optics in a curved 
space-time 

I. Dwivedi and R. Kantowski 
The University of Oklahoma, Norman, Oklahoma 
(Received 5 June 1972) 

Gravity'S effect on the polarization of test electromagnetic fields is presented. It is shown that under ordinary 
circumstances the effect is not measurable. 

INTRODUCTION 

Almost all calculations which involve electromagnetic 
waves moving in a curved space-time resort to the geo
metrical optics (g.o.) approximation for test fields. g.o. 
gives information about the intensity of point sources, the 
bending of light rays, and the distortion of wavefronts as 
the light moves through a curved space-time. However, 
it neglects wavelength dependent properties such as 
polarization, e.g., a plane or circularly polarized wave 
at the source will be a plane or circularly polarized 
wave at the observer. To estimate what effect the gravi
tational field has on the polarization, one must go to the 
first-order correction in wavelength for g.o. In the next 
section the first-order correction is presented, and in 
the following sections it is applied to a point source in a 
Schwarz schild field. 

FIRST-ORDER CORRECTIONS TO g.0.1 

Following Ehlers the E & M field in vacuum can be 
written as a self-dual bivector Gab and the amplitude of 
the wave expanded in a power series to first order in the 
wavelength: 

Gab(X c, €) = Ka.b(xc, €)eiS(Xd)/t + K<:b(xc, €)e-iS(Xd)lE, 

;:e [Kfb(O) + Kfb(1)E]e iS/E + [K."b(O) + K."b(1)€]e- iSIE , (1) 

where the positive phase terms represent the right cir
cularly polarized part of the wave and negative the left. 
S = con. are the null surfaces of constant phase and € is 
related to the wavelength by 

A = 21TE/(S'aua), (2) 

u a being the observers 4-velocity (uau a = - 1). 

There are only three independent self-dual bivectors, and 
one is given by K+ (0) and K (0), i.e., by the g.o.limit, 
€ -> O. These basis bivectors are constructed in terms 
of a null tetrad (k a S, a' m a' t a) which is parallely 
transported along the characteristics of the null surfaces 
S = con,2 

kaka = mama =:: tat a = lama = taka = 0, 

kama = tala = + 1, 

k = m = ia = 0 a a , 

The basis bivectors are then simply written as 

The g.o.limit as given by Maxwell's equation is 

Gab =A+(O)VabeiS/E +A_(o)vabe-islE, 

where 

(3) 

(4) 

(5) 

1941 

A± (0) + eA± (0) = o. (6) 

8 in the above is the usual expansion parameter (8 == 
taka. bfb = ~ka -a)' and Eq. (6) says that the intensity of a 
g.o.wave falls'off as (area)-1. The polarization is un
affected because only Vab appears and it is parallely 
transported. 

To do the first-order corrections to g.o., K'tb and K."b 
are expanded in terms of vab, Uab,Mab, and Maxwell's 
equations are imposed to first order in €: 

Kfb = At Vab + B± Uab + C.Mab, A. = A± (0) + A± (l)€, 

Maxwell's equations give 

B. (1) = 'f iA. (O)a, 

C. (1) = ± iA. (0) J - A± (O){, 

A± (1) = ± iA± (O)!±, 

!. (xc) are functions satisfying 

(
A. (O),t,t A.(O) t - - _~ 

i. A. (0) - A:(O) { - {, t - aa J' 

(7) 

(8) 

(9) 

and a, {, a' are scalars defined in terms of the tetrad by 

a = laka;blb, 

{= tala;btb , 

usual shear, 
(10) 

The procedure for doing first-order optics is to first 
construct S and its tetrad field; second, to evaluate the 
scalars 8, a, {, and a f and integrate Eq. (6) for the geo
metrical optics terms A. (0); and finally, turn to Eqs. (8) 
and (9) to find the first-order correction. Equation (9) is 
clearly the hardest to solve in most applications, how
ever, in the next section it is shown that B± (1) are the 
only terms needed to estimate polarization effects. 

FIRST-ORDER EFFECT ON POLARIZATION 

The electric and magnetic vectors seen by an observer 
u a are given by 

(11) 

and the maximum and minimum values of E2 are 

E~ax,min = H&'s± IS·SI}. (12) 

Gravity's effect on polarization can be estimated by con
sidering right circularly polarized light at the source. If 
the light stays right circularly polarized, then $'S re
mains zero as it does when Kfb = A+ V ab • The following 
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can be taken as alteration of the polarization, 

(13) 

where 8'& = E~ax + E~in is proportional to the inten· 
sity. P gives the fraction of the energy carried by the 
linearly polarized part of the wave. Equation (13) shows 
that the first-order term in P comes from B+ (1) alone, 
and when Eqs. (5) and (8) are used it reduces to 

(14) 

If an effect on the polarization is going to be observed, 
Eq. (14) says that the gravitational field must introduce 
large amounts of shear into the light waves. Two ob
vious applications are (1) atfocal points in Schwarzschild 
fields and (2) in high shearing cosmologies near the big 
bang. In the next section the first case is considered. 

OPTICS IN THE FIELD OF A DENSE STAR 

A dense star is interesting because of its radius R is be
tween 2m and 3m it can focus its own light (see Fig. I) 
and near focus a --) 00. When looking at a point source on 
the star the expansion and shear e and a can be defined 
in terms of the two dimensions of the wavefronts 

e= iID+/D+ + D-ID.I, 

a = ~IDjD+ -D_/D_I. 

/ 
/ 

(15) 

(16) 

/ 

D" and D _ are given by 

D. = o(3r sin¢, (17) 

{ r, r dr 
D = Mr r} 1/2 

~ cR r 2{r}3/2' 
(18) 

where {r} == {1 - (l2/r2)[1 - (2m/r]). 

In the above equations, rand ¢ are the usual Schwarzs
child coordinates (¢ = 0, r = R is the location of the 
point source) and l is the impact parameter at 00. 0(3 is 
an isotropy parameter and is defined in Fig. 1. a (and 
hence P) becomes large near focus (¢-~ mr) and can be 
approximated by 

(19) 

where k is the affine parameter constant for a null geo
desic in Schwarz schild space-time and t::.¢ is defined in 
Fig. 1. Near focus P becomes 

P~ [1-(2m/r)Jl/2;\. (~). 
41Tt::.¢r r 

(20) 

According to Eq. (20) long wavelengths are the most 
favorable. To estimate P consider a radio antenna cen
tered on the focus of a point source and calculate P at 
the edge of the antenna. Some reasonable numbers to try 

CENTRAL RAY 

D 

liS 

FIG. 1. Light from a point source in a Schwarzchild field. 
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are f).cf>r ~ 15 m (antenna size), A ~ 1 m, l ~ 104 m, and 
r ~ 1018 m (star distance). P is then seen to be 10-16-

much too small to be detected. The conclusion is that 
the region of large shear is so small that the antenna 
would not measure P '" 0 for a single point source. If an 
extended source is considered, every point of the antenna 
is a focus of some point on the star; however, the conclu
sion is the same as before. Only an immeasurable frac
tion of energy will be seen as high shearing waves. It 
should be pointed out that P could be increased to 10-3 

at the edge of the antenna by making observations close 
to the dense star, e.g., r ~ 105 m. 

'J. Ehlers. Z. Naturforsch. 229, 1328 (1967). 

CONCLUSION 

Other applications can be considered, e.g., (1) polariza
tion in the radiation coming from a collapsing star. (2) 
polarization in the primeval fire ball due to inhomo
geneities, and (3) polarization in the primeval fire ball 
due to an anisotropy in the Hubble expansion. All three 
of the above are too small to be seen. 

The conclusion is that in spite of the elegance of higher
order optics in a curved space-time, there seems to be 
no reasonable observation which can detect a correction 
to g.o. 

2\. Robinson and A. Schild, J. Mat;1. Phys. (N.Y.) 4, 4H4 (190.1). 
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A new representation of the solution of the Ising model 

M. J. Stephen' 
Physics Department, Rutgers University, New Brunswick, New Jersey 08903 

l. Mittag 
Saybrook College, Yale University, New Haven. Connecticut 06520 
(Received 3 July 1972) 

It is shown that the transfer matrices for various Ising lattices in two dimensions commute with certain linear operators. 
The problem of finding an explicit form for the largest eigenvector is considerably simplified. The expansion coefficients 
appearing in the eigenvectors found as the solution of a set of nonlinear difference equations are Pfaffians. The 
connection between this type of solution and other solutions is clarified. This form for the eigenvector also simplifies the 
calculation of correlation functions. Some geometrical aspects of the Ising model are discussed. 

1. INTRODUCTION 

In an early approach to the solution of the two-dimen
sional Ising model Onsager1 considered a transfer ma
trix which extended the lattice along diagonals. The pub
lished version2 analyzes extensions only along columns. 
It is interesting that the diagonal extension offers many 
advantages. A simple linear operator which commutes 
with the diagonal transfer matrix was found by Onsager.l 
This result can be generalized to the triangular, hexa
gonal, and rectangular lattices. The transfer matrices 
for these cases are shown to commute with operators 
linear in the algebra generated by the column and row 
operators A and B. The eigenfunctions of these linear 
operators can be constructed by solving a set of dif
ference equations with certain symmetry porperties. 
Using the diagonal transfer matrix we can write the 
partition function as a single integral, symmetric in 
the horizontal and vertical bonds, HI and H 2' respective
ly. The dual transformation is shown to be the diagonal 
transfer matrix evaluated at HI = - H2 = ± hi. Cor
relations along the diagonal are obtained by a method 
which uses the dual transform; disorder is easier to 
calculate than order. The underlying geometry is found 
to be Euclidean rather than hyperbolic. 

Consider an Ising lattice whose sites, n per column, 
are designated by spin variables Il = ± 1. Let the hori
zontal and vertical bond strengths be J 1 = KTH 1 and 
J 2 = KTH2 (see Fig. 1). The transfer matrices which 
represent the columnar and diagonal extensions, are, 
respectively. 

WC(Hl,H2)~~1 = SI exp(H 1 ll j llj + H 2 Iljllj+1)' (1.1a) 

W(Hl,H2)f1~1 =? exp(H1lljllj + H 2 Iljllj+l)' (1.1b) 

The columnar transfer matrix We can be represented 
as the product of two operators V 1 (H 1 )V2 (H2) with 

VI (H 1) = (2 sinh2H 1)n/2 exp(HrB), 

A =65)5)+1' 
) 

VZ(H2) = exp(H2A), 

tanhH! = exp(- 2H 1 ), 1 = sinh2H 1 sinh2H*1' 

~ 
.. 
. . 

. . 
H. . . 
H, 

(a) (b) (c) 

FIG. L Bonds appearing in diagonal extension (a), lattice deformed in 
(b), and the usual columnar extension appears in (c). 
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The operators Cj and 5j are equivalent to the two Pauli 
matrices a/ and a/. They can also be defined as 

5 j<P (Ill' .•. , Il j' ••• ) = Il j<P (Ill> ... , Il p ••• ). (1. 3a) 

C j<P(Il1>''',llp''') =<P(1l1'''',- IIp''')' (1.3b) 

Cyclic boundary conditions are imposed; C) +n = C j' 5j + n 

= 5 .. The following Single-spin representation is helpful. 
Gerieralization to n spins is straightforward: 

IJlJlI = O(1l - Il') = W + Illl ' ), 

CJl~1 = Mil + Il') = 10- Illl ' ), 

5~~1 = IlO(Il- Il') = ~(Il + Il'). 

(1. 4a) 

(1. 4b) 

(l.4c) 

With Il standing for a column of spins Ill' •• Iln , in this 
representation one form of the dual transformation is 
given explicitly by 

This operator is orthogonal in the even space, the sub
space left invariant by the projection operator 11.+ = 
t (I + U) where U = C 1 C 2 • •• Cn • In this subspace L 
interchanges A and B. Also 

LVI (H l)L = (2 sinh2H l)n/2 V2(Hi)A+~ 

LV 2(H 2) L = (1 sinh2H 2)n/2 V 1 (H~)A +' 

(1. 6) 

We will show in Appendix C that the dual transformation 
is essentially the transfer matrix TV (H 1, H 2) evaluated at 
HI = - II 2 = ± in /4. Below we determine some of the 
eigenvectors and eigenvalues of Wand hence of L as 
well. 

2. COMMUTATION RELATIONS 

In Appendix A we show that the diagonal transfer matric
es IV(H 1 ,H2 ) and W(H1,H2) commute if they have the 
same modulus k defined by 

k = sinh2H 1 sinh2H 2' (2.1) 

This modulus plays a multiplicative role under the dual 
transformation as seen from 

At the critical point, HI = H~; thus kc = 1. 

Transfer matrices for the triangular and hexagonal 
lattices are given by (see Fig. 2) 

(2.2) 
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W!:JHlIH2,H3) = V2(H3)W(H 1 ,H2 ), 

Whex(Hl>H2,H3) = W(H 1 ,H2)V1 (H3} 

(2.3a) 

(2.3b) 

A relationship exists between hexagonal bonds HI> H2, H3 
and the triangular bonds H12 , H13 , H 23 called the star
triangle transformation (see Appendix E). It is express
ed by the following equation which also holds when the 
order of operators on both sides is permuted. 
NtH 1> H 2, H 3) is a function: 

W(H l' H2 ) V 1 (H3 ) = N(H1 , H2 , H3)n V2(HI2 )W(H13' H23 ). 

(2.4) 
Onsagerl has used the star-triangle transformation to 
derive the important result 

[B + kA, W] = 0. (2.5) 

A simple calculation also gives this result. The vanish
ing of the commutator Equation (2. 5) shows that there 
exists a representation in which both Wand B + kA 
have the same eigenvectors. The latter is obviously 
Hermitean while the former is normal. This is indicated 
in Appendix A. The eigenvectors and the spin-spin 
correlations along a diagonal can depend only on the 
modulus k. 

The Simple method used to prove Eq.t2. 5) can begenera
lized to find linear operators which commute with the 
various transfer matrices. Let We, and Ws = V2 -1/2 

We, V2 1/2 be two equivalent transfer matrices for the 
triangular lattice. Then the following equations hold 
(see Appendix B): 

[B + k1A + k2A2' Ws ] = 0, A2 =6 Sj_1C j Sj +1' 

J (2.6) 
[B + klA + k 2G V We,] :::= 0, 4G I = [B,A]. 

We introduce a notation to simplify equation with hyper
bolic functions 

C i = cosh2H;, 2 i = coshll i' 

Si = sinh2Hi , Si = sinhHi • 

Then 

k 1(23 )2 = k1c 3 = slS 2C3 + C 1C 2 S 3 

(A )2 _ (A)Z k 2 C3 -- S3, k 2c 3 ==-s3' 

(2.7) 

(2.8) 

The pseudo-Hamiltonians in Eqs. (2. 6) are of course 
related by a Similarity transformation. The hexagonal 
lattice is included in these results by the use of the star
triangle transformation Eq. (2.4). In the limit of Hz -> 0, 
a result is obtained closely related to a recent discovery 
of Suzuki,3 We find that V2(tH3 ) VI (H1)VZ (!H3 ) commutes 
with 

(2.9) 

Suzuki's result is equivalent to making a similarity trans-

(0) (b) 

FIG. 2. Hexagonal 
lattice (a), and tri
angular lattice (b) 
deformed so that 
their transfer matri
ces can be represented 
as in the text. 

formation of Eq. (2. 9) with the operator gL, where L is 
the dual transformation and g == 2-11 /2 n j (C j + S j)' The 
pseudo-Hamiltonians in (2.5), (2.6), and (2.9) are easily 
diagonalized by introducing fermion operators. However, 
it is instructive to proceed in a somewhat different 
manner. 

3. SYMMETRIC EIGENFUNCTIONS OF B + kA 

A. Even space 

Since the transfer matrix commutes with U, the space of 
functions decomposes into even and odd subspaces. A 
typical member of the even subspace is 

<p(f.L) = 2-n1z(lo + 6/i;f.LiJ.J.) + 2:) li)'klJ.J.;J.J.jf.LkP-/ + ... ). 
\: i>j i>j>k>l 

(3.1) 

Now B + kA may be thought of as a Hamiltonian with k 
as an interaction constant. (The ground state of - B 
kA determines the partition function.) At high tempera
tures k -> 0, so that B is the noninteracting part. Simple 
considerations imply that <Po (11) , the ground state, is con
stant in this limit, yielding the totally disordered state 
while 

2:) L/l jll iPO(Il ' ) =: (1/J2)no(p- j -p- j +l)' k = 0, (3.2) 
Il' J 

is the totally ordered state, L interconverting order and 
disorder. Let <P 0 (p-, k) be the ground state eigenfunction 
corresponding to a particular modulus k, then generally 

(3.3) 

From a group theoretic viewpoint, the transfer matrix 
W(H I , Hz) is normal and invariant with respe,ct to the 
cyclic group while B + kA is Hermitean and invariant 
with respect to the dihedral group. The ground state 
lies in the symmetric subspace, invariant to all group 
operations. Thus/i/k) in Eq. (3.1) is a function of the 
difference i - j. The interpretation of hj as the probabi
lity amplitude of finding spins j + 1,j + 2, ... , i identi
cal while all other spins are opposite can be seen from 
Eq. (3. 3). . 

The sums present in Eq. (3.1) definelij for i > j. We 
may extend/ij antisymmetrically for other values. 

(3.4) 

Boundary conditions imply the follOwing restrictions, 
coefficients of the ground state must satisfy 

(3.5) 

The last equality is satisfied by imposing anticyclic 
conditions lij = - In +i.j' Only odd multiples of rr/n will 
then occur in the Fourler series for Iij' 
Higher coefficients lijkl' etc., can also be extended anti
symmetrically (determinants are such examples), but 
in our case we assume thatfijkl and higher coefficients 
can be represented by Pfaffian forms 

(3.6) 

This is just sufficient to solve all the resulting difference 
equations by Fourier analysiS. A fermion type solution 
is recovered. 
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Let us seek an eigenfunction of B + kA of the form of 
Eq. (3.1) withfo = 1, the other coefficients vanishing in 
the high temperature limit. Consider the equation 

(3.7) 

If we multiply this equation by 1, Ilillj' Ililljllklll' ••• , with 
i > j> k > l, and sum over all Ili = ± 1, we obtain a 

series of difference equations, the first two of which are 

.\. = n + k ~ f' 1 '. , J;.J 
(3.8a) 

J 

V ij = (n - 4) f ij + k[ <\.j+1 + {j i± l,j± I} + ~ fi,j ,k+l,k]' 

k (3.8b) 

{fi d,j±l} =fi+l,) +fi-l,j +fi ,j+1 +fi ,)-I' (3.9) 

The quartic term should have its subscripts ordered; 
but k + 1, k always occur consecutively and ordered so 
that 

f i ,j,k+l,k =fi ,k+l,k,j = fk;I,k,i,j' 

The three regimes can be written as a single sum over 
k. If we eliminate.\. from Eqs. (3. 8a) and (3. 8b) and use 
the Pfaffian decomposition Eq. (3. 6), we obtain 

4fij = k[Oi,j+1 - 0j,i+1 + {fi±I,j±I}] 

(3.10) 

Since the calculation was made for i > j, the subtraction 
of 0, , 1 preserves the antisymmetry of f;.. Higher 
terdJ.'~+decompose similarly. The nonlineir equation 
(3.10) describes the propagation of order along a dia
gonal. 

In the case of interest f " is a function of i - j. The last 
term in Eq. (3.10) is th~)difference of two convolutions, 
so the equation can be solved by Fourier analysis. 
Choose n even for simplicity and let 

~k = (lin) ~ i q expi(j - k)q. (3.l1a) 
q 

O'k = (lin) L expi(j - k)q, 
J, 

(3.11b) 
q 

q = ± 1Tln,± 31Tln, ••• ,± [(n-1)ln]1T. 

Restricting q to odd multiples of 1T I n satisfies the anti
cyclic property of fjk' Substitution of Eqs. (3. Ha) and 
(3.11b) into Eq. (3. 10) yields a quadratic equation in f

q
: 

k sinq(l + j2) = 2i(1- k cosq)f . (3.12) 
q q 

This equation can be readily solved by introducing an 
angle cP q and an amplitude R q such that 

Rq sin2cpq = k sinq, 

R cos2cp = 1 - k cosq. 
q q 

(3. 13a) 

(3. 13b) 

FIG. 3, Euclidean triangle 
of Eq. (3. 13). 
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The two solutions are 

l _ ' t _ R q - 1 + k cosq J 
, z ancpq - ik sinq t 

fq = ) , _ R q + 1 - k cosq \' . 
z cotcp - 'k' 

\ q - z smq 

(3.14) 

The first solution (- i tancpq) has the proper high tem
perature limit i q -> O. The other solution represents ex
cited states within the symmetric subspace. 

The relations defining R , CPq in Eq. (3.13) are the geo
metry of the Euclidean tfiangle in Fig. 3. (A hyperbolic 
triangle plays a similar role in the analysis of 
V11/2V2 V11/2; see Ref. 2,p.135.) 

The wavefunction can be normalized by evaluating 

But squares of Pfaffians are determinants of skew
symmetric matrices. If F is the n x n matrix with 
components ii' then the normalization constant No. 
satisfies ) 

No-2 = det(J +F) = II + Fl. (3.15) 

B. Odd space 
A typical member of the odd space is 

At high temperatures where B dominates, the eigen
function corresponding to the maximum eigenvalue of 
B has gi constant and all other coefficients vanish. To 
obtain an eigenfunction with this limit we use our previous 
procedure of extending the coefficients antisymmetri
cally. We set gi = 1 and let 

gijk = gij - gik + gjk' 

gijklm = gijkl - gijkm + gijlm- giklm + gjplm' etc. 

Again we assume that g ijkl can be expressed as a 
Pfaffian 

(3.17) 

(3.18) 

The boundary condition g n + I, i ,j = g ij I and the cyclic 
symmetry condition gi 'k = gi+I,j+I,k+1 imply that gij is 
a function of the differ~nce i - j. But now the boundary 
condition is satisfied with only even multiples of 1T In 
present in the Fourier series. 

Multiplying the eigenvector equation by Ili' llilljf.1. k' 

llill'llklllllm"" and summing over all Ili = ± 1 results 
in a

J 
set of difference equations which as before can be 

solved by Fourier analysis. Let 

gjk = (lin) ~ gq expi(j - k)q, q = ± 21Tln ± 41T/n,···. 

q (3.19) 

then 
(3.20) 

with CPq determined from the same triangle as before. 
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C. Triangular lattice 

For the triangular and hexagonal lattices the eigen
functions may again be taken in the form (3.1). Choosing 
the symmetric form for the transfer matrix of the tri
angular lattice the pseudo-Hamiltonian is given by 
B + k1A + k2A2 in Eq. \2. 6). The arguments leading to 
(3.10) may be repeated exactly leading to the equation 
determining the coefficients I ij: 

4/ ij = k1[1\,j+l- aj,itl + {fi ±I,j±l}] (3.21) 

+ k 2[1\.j+2 - 0j,;+2 + {fi±2,j±2}] 

+ kl ~ (fUJjk+ 1 - lik+1/jk ) 
k 

+ k2 ~ (fik-I/jktl - lik+1/jk_)' 
k 

This equation can again be solved by introducing the 
Fourier transforms (3.11) with the result for the tri
angular lattice 

R T-l + kl cosq + k2 cos2q 
I q = q i(k 1 sinq + k 2 sin2q) , 

where 

RT 
q 

(3 .. 22) 

= [(1 - k 1 cosq - k 2 cos2q)2 + (k I Sinq + k 2 sin2q)2]1/2. 

At the critical point, k I + k 2 = 1. 

4. CONNECTION WITH OTHER SOLUTIONS 

The connection between spinors and fermion operators 
was used by Schultz, Mattis, and Lieb4 in their solution 
of the ISing model. To translate our results into their 
lanr;uage, let us regard <I>(/.L) as the representative 
< 111 <1» of some abstract vector 1 <1». Let the vacuum be 
denoted by 10), such that (1110) = 2-n12 is the normalized 
ground state at high temperatures. 

FollOwing Kaufman5 we introduce the following fermion 
operators 

b j = ~C IC 2 '" C j _1SPi - Cj)l i t1 '" In' 

b]= 1C 1c 2 " 'Cj_ISj(Ij + Cj)lj+I' "In , 

{bi' bZ} == ajk, {bj' bk} == 0, etc. 

(4.1a) 

(4.1b) 

Operating on the vacuum bt has the effect of multiplying 
by I1r In fact, a one-parti6le representation is 

In terms of these operators 

1 <1>0> == (1 + ~ !;btbj + ~ kkZbTbtbtbI + ... ) I 0). 
i>j J J Pj>k>l J J () 

4.2 

The Pfaffian nature of the coefficients and the fermion 
commutation rules allow us to express Eq. (4. 2) in two 
ways (Hurst6 used the following forms to generate 
Pfaffians): 

.no + fiJbJtbI) 10) 
i» 

(4.3a) 

(4.3b) 

The functional representation of any vector I <1» may be 
recovered by evaluating 

</ll<l» 2-n/2{Orn\l+/ljbj)I<I». 
J 

(4.4) 

The quadratic form in Eq. (4. 3b) is simplified by Fourier 
analysis. Let us use the transformation introduced by 
Schultz, MattiS, and Lieb4 

b. = (1/~)e-i(n/4) 
J q 

a eijq 
q 

0q = (1/~)ei(lT/4) ~ bje-ijq, 
J 

q = ± rr/n, ± 3rr/n, ... , ± [(n - 1)/n]rr. 

(4.5) 

The operators Oq'O; satisfy fermion rules also. The 
quadratic form becomes ~ q >0 tan<f:> qa;a!q' The unnor
malized ground state is 

(4.6) 

With respect to this new vacuum, annihilation and crea
tion operators are easily found. 

In Ref. 2, Onsager introduced a Lie algebra as follows: 

A 0 = - B == - ~ C., An+k = - UAk' . J 
J 

Al =A =~ SjSj+l' 

A2 = 6 Sj_ I C j S j + 1 , 
j 

A3 =~ Sj_;t,Cj_ICjS) + V etc., [GJ,Gkl = o. 
J 

The operators A j' C k were then Fourier-analyzed: 
2n 

X ± iY = (2n)-1 ~ A.e ±iqj 
q q )01 J ' 

2n 

Z = (i/2n) 6 Gj sinqj, (4.8) 
q jol 

Aj = ~ Xq cosqj - Yq sinqj. 
q 

In the (even, odd) space q is an (odd, even) multiple of 
rr/ n. In terms of fermion operators we find 

X = n + n -1, q q -q nq = a;aq 

Y = ata t + a a q q -q -q q' Z =i(atat -a a). q q -q -q q 

[Xq' Yql = - 2iZq , X2 = y2 = Z2 =R q q q q 

R X X, etc. q q q 

In the even space the pseudo-Hamiltonian B + kA 
- Ao + kA I becomes 

- 2 ~ Xq (1 - k cosq) + Y k sinq 
q>o q 

or 
- 2 ~ Rq( Xq cos2<f:> + Y. sin2<f:> ) 

q>O q q q 

(4.9) 

But the coefficient of R may be also written as X trans
formed by the unitary 6perator ilq>o exp\i<f:> Z ). qThis 
is an S matrix which transforms the noninteqrabting 
ground state into the new ground state. Using (4.10) we 
obtain (4.6) as before. 

We have thus established the connection between the 
different representations of the eigenfunction of the 
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transfer matrix corresponding to the explicit Pfaffian 
solution, the fermion solution, and Onsager' s algebraic 
construction. 

5. THE COEFFICIENT f'i" 
The coefficient f i · is not a correlation function but is 
related to the exi~tence of long range order in <P. If fi 
has a positive lower bound when site i and j are far } 
apart, then <P describes an ordered state. We will exa
mine the asymptotic behavior in the case of an infinite 
lattice. We have 

fr+j,j = f(r) = (lin) 2:: fqeiqr 
q 

f(r) = ~ i7f R(e) - 1 :+- k cose eirOde. 
21T l -7f k sme 

(5.1) 

Let z = e is, for k < 1 the singularities at e = 0,1T are 
removable, and f(r) can be expressed as a contour inte
gral around the unit circle. This integral can be deform
ed to surround the branch cut from z = 0 to k. Scaling 
yields 

f(r) = k
r t (1 - k 2t )1/2(1 - t)1/2(1 - k2t2)-ltr-1/2dt. 

1T 0 (5.2) 

The SUbstitution t = exp(- 8 2 ) transforms the integral 
into a canonical form for the study of its asymptotic 
behavior for large r. The leading terms are 

f(r)~ k
r 

}; +O(kr + 1), k<1. (5.3) 
(1 - k 2 ) 1/2 2 1Tr 3 / 2 

The vanishing of f(r) for k < 1 as r --7 CG is related to 
the vanishing probability of finding r consecutive spins 
(+ 1) surrounded by (n - r) spins (- 1) with n --7 ro in 
the ordered state with modulus k- 1 • 

The case for k > 1 differs in that the singularity at 
e = 0 is no longer removable. The integral, now con
sidered as a Cauchy principal value, can be expressed 
by an indented contour plus half the residue at z = 1, 
the contour lying within the unit circle. This integral 
may also be deformed around branchpoints z = 0, k- 1 • 

Similar analysis as above yields 

1 k-r 1 
f(r) ~ 1 - - + + O(k-r - 1 ) 

k (l-k-2)1/2 2_lir 3 / 2 ' 
k> 1. 

(5.4) 

Here, of course, there exists a possibility of finding 
correlated spins in the disordered state. It is interest
ing to note that the long-range order in f(r) is propor
tional to (1 - TITe) for T < Te' 

When k = 1, R(e) = 21 sin(e/2) I, and 

41°oe-2rt 
=- -- dt 

1T 0 cosh! 

f(r) ~!! + o(~). 
1T r r3 

(5.5) 

(5.6) 

At the critical point, the exponential nature of the ampli
tudes f (r) changes abruptly. 

6. THE PARTITION FUNCTION 

It is well known that the partition function Q per site is 
determined by the maximum eigenvalue Qn of the trans
fer matrix 
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Q = lim (Qn)l/n, (6.1) 
n~oo 

with 

Qn<Po(il) =2:: WIlIl,<po(il'). 
Il' 

(6.2) 

Substituting Eq. (3.1) in Eq. (6. 2) with fo = 1 and summ
ing over all il i = ± 1 we obtain 

(6.3) 

The product in Eq. (6. 3) can be put into a familiar form 
by introducing 

(6.4) 

The eigenvalue Qn can then be expressed in vector form 

(6.5) 

To evaluate this expression it is convenient to take I<p 0) 
in the form (4.6). From Eq. (4. 9) the operator A = Al 
takes the following form in the even space: 

A = 26 x* 
q>O q' 

(6.6) 

X* = X cosq - Y sinq. q q q (6.7) 

Now X; has the property (X;)21 0) = 10). Thus the left 
vector (0 I eXPyA becomes 

(0 [1 (cosh2y -cosq sinh2y - a_ a sinq sinh2y), 
q>O q q (6.8) 

and 

Q n = (2{3)n [1 (cosh2y - cosq sinh2y + sinq sinh2y tancp ). 
q q 

Using (3.13) and (6.4), we get 

Qn = J;!o 2(c1C 2 + Rq). 

(6.9) 

(6.10) 

Taking the infinite limit n --7 ro, we can express the par
tition function as a single integral, symmetric in the 
bond strengths: 

10gQ = (21T)-lt de log2 [clC 2 + (1 + k 2 - 2k cose)1/2]. 
o 

(6.11) 

The transformation connecting Eq. (6.11) with previous 
integral representations obtained by Onsager is found 
in Appendix D. 

7. THE CORRELATION FUNCTION 

The calculation of spin-spin correlation functions (S.S.) 
was first accomplished by Kaufman and Onsager.7 Thd 
two spins were located on the same column and the 
correlation function was obtained as the sum of two 
Toeplitz determinants. Wick's theorem unknown at that 
time was later used by Schultz, Mattis, and Lieb4 in 
their fermion approach to the ISing model. Correlation 
functions were also considered by Montroll, Potts, and 
WardS who used the dimer9 approach introduced by 
Kasteleyn 1 0 and by a number of other authors,l1-13 

The correlation function along a line is expressible 
either as a single Toeplitz determinant or as the sum 
of two such determinants depending upon which of the 
symmetric forms of the columnar transfer matrix is 
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used. In the limit of large separations i - j --7 00, the 
spin-spin correlation determines the square of the mag
netization. 

Using the Pfaffian form of the eigenvector Equation (3.1) 
and the dual transformation, we can give a rather simple 
derivation of the spin-spin correlations along a diagonal 

(7.1) 

where <l> 0 is normalized. 

In the representation we have chosen the operators 
Sl,S2"" are not diagonal but C 1 , C2 ,'" are. The ex
pectation value can be transformed by the dual L to the 
C operators. Thus, in a sense, the calculation is effected 
by computing the disorder at the reciprocal modulus. 
From Eq. (3. 3) and the dual L, we have 

LsjsiL = C j +1C j+2" 'CiA+, 

L I<l>o(k) = l<l>o(k- 1). 
(7.2) 

Cyclic invariance implies that we can rewrite the spin
spin correlation as 

(7.3) 

The operation of C k is to change the Sign of any term 
containing Ilk' Thus (SjS) can be expressed as the ratio 
of two determinants, the denominator being, of course, 
the normalization constant 11+ F(k-1 ) I from Eq. (3.15). 
The numerator is also of this form. Thus 

(7.4) 

The components of the n x n matrix F(k- 1) are given by 

Frs(k- 1) = ErEsFrs(k- 1), 

E r = { i, 1 "" r "" In}. 
.1, rn < r < n. 

(7.5) 

Multiplying the m top rows and the m left columns of 
I + F by - i, we find that 

(7.6) 

where 1m is an n x n diagonal matrix whose first m ele
ments are unity, all others vanishing. The n x n matrix 
I + F(k-1 ) can be readily inverted by using Eqs. (3. lla) 
and (3. llb). Its components are 

[I + F(k-1)];~ = tOrs +(1/2n) L:expi[2<pq (k- 1) + q(r - s)). 

q (7.7) 

The right-hand side of Eq. (7. 6) becomes, after substi
tuting Eq. (7.7), an In x In determinant generated by 
exp2i<p (k- 1) = exp[2ilJ; (k)]. In the limit n --700, (S.Si) is 
represl:mted by the det~rminant of an m x m Toepiitz 
matrix T ( m) whose components are Fourier transforms 

of exp[2ilJ;(e, k)]: 

(SjSj+m) = IT(m)l, (7.8) 

T (m) = ~ jTf de exp{ i[(r - s)e + 2lJ;(e)]} , 
rs 211-Tf 

1"" r, s "" m, (7.9) 

with 

exp[2ilJ;(e)] = ' . 
{ 

.. - e- iB (l- ke itl )1/2(1- ke- i&)-1/2 k < 1 

(1- k- 1e- i8 )112(1- k- 1e- i8 )-1/2, k> 1 

(7.10) 

The generating function for correlations along a diagonal 
is simpler than the function for the columns which con
tains four factors instead of two. The angle involved is 
an element of a hyperbolic triangle. 
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APPENDIX A 

The product (WW') , pictured in Fig.4a can be written 
~~ 

(WW') , =6 n exp[Il.(H1A + H 2A.+1) 
~ ~ A c± 1 J J J J 

+ Iljd(H2Aj + H1Ajd)]' (AI) 

Each factor can also be represented by 

(()Ij + f3lj)O(Aj - Ajd) + (Yj + 0h)O(Aj + Aj+l) 

or in matrix form by 

with 
Tj = ()I / + f3 jS + Y F + ° jSC, 

()Ij = cosh[Il/HI + H 2) + Ilj+1(H1 + H 2)], 
Yj = cosh[llj(H I -H2) + ll'j+1(H2 -Hj)], 

i3 j = sinh[Il/H 1 + H 2) + Ilj+1(H~ + Hz)], 

OJ = sinh[Il/H l -H2) + Ilj+1(H2-H1)]. 

Thus, WW' can be expressed as a trace: 

(A2) 

(A3) 

WW' = TrnT .. 
j J 

(A4) 

Similarly for W'W let us call the corresponding matrix 
T

J
'. whose coefficients Ct '., {3'., Y~, 0'. are related to the 

. J J J J 
pre.ceding ones by 

()Ij = ()I j' yj = y j' 

i3 j = 11 jllj+1i3 j' oj = - Iljllj+10j' 

Following a technique similar to Baxter, 14 we seek a 
nonsingular matrix R independent of j such that 

(0) (b) 

FIG.4 The products (a) WW' and (b) WWt. 

(A5) 
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If there exists such a matrix R, then the operators W 
and W' will commute. It is sufficient to examine matric
es of the form R ~co a + be. A pair of linear equations 
result from this choice of R in Eq. (A6). Eliminating a 
and b from these equations, we obtain the condition 

sinh2H 1 sinh2H2 = sinh2H~ sinh2HZ. 

Examination of Fig. 4b indicates that a similar procedure 
ran be used to prove that W is normal: 

IIV, WTJ = O. 

APPENDIX B 

We will consider the more symmetric form of the tri
angular transfer matrix 

(1 + k2iJ rlJ.l ;+1) exp[- H 3J.liJ.lj-1 + J.lj+l) 

- 2(HIJ.ljJ.l~+1 + H2J.ljJ.lj+I)](Ws)~~I. 

~ /~ The choice of k2 = - tanh2H3 = - 53 2 C3 2 simplifies 
the factor depending on H 3 which becomes with the no
tation of Eqs. (2. 7) 

(B2) 

Similarly, postmultiplication yields 

Subtracting the two forms and then summing over j we 
find after some detailed algebra that 

[B + k:02' Ws ] = - c3-2(5152C3 + c 1 C253)[A 1 , Ws ]' (B4) 

which is Eq. (2. 6) with kl and k2 given by Eq. (2. 8). 

Interchanging H 2 and H 3 in Eq. (B4) and then taking the 
limit H 3 -) 0, we obtain a new result that 

[V2 (H 2 )V1(IJl),B + (C 1 5 2 /C 2 )Al + t(5 2 /c 2 )[A,B]] = O. 
(B5) 

The operator in Eq. (B5) can be put in a summetric form 
by multiplying by 2C2/52 and using Eq. (1. 2). The pseudo
Hamiltonian becomes 

(B6) 

x~ = tanhH~, x 2 = tanhH2 • 

APPENDIX C 

We will now exhibit the relationship between the dual 
transformation and the diagonal transfer matrix eval
uated at HI = - H 2 = ±t1Ti. This result is suggested by 
the fact that the modulus k is unity at the critical point 
and also at the above values of H 1 and H 2' Consider 

W(tlli,- hi) = IT 2-1 / 2 (1 + i/-lj /-lj)2- 1/ 2(1 - iJ.lj-l/-lj) 
J 

= IT [o(J.lj -J.lj-1) + iJ.ljJ.ljo(J.lj + /-lj-l)]' 
J 

(C1) 

J. Math. Phys .• Vol. 13, No. 12, December 1972 

But unity may be expressed by 

1 = IT ~(l -- iJ.lj)(l + i/-lj _1), 
J 

1 = IT [O\J-Lj - J-Lj-l) - i/-ljo(J-Lj + J-Lj-1)]' 
J 

(C2) 

Thus multiplying Eq. (C1) by Eq. (C2), we find that 

W(hi, - ·hi)= IT [o(J-Lj -J-Lj-1) + J-Ljo(J-Lj + J-Lj-1)]' (C3) 
J 

which aside from a normalization constant is essentially 
the dual transformation. Complex conjugation of Eq. (C3) 
completes the demonstration. 

APPENDIX D 

Two integral representations found by Onsager for the 
partition function are 

1 1. (1f * logQ = 2" log25 1 + "2 {, dB cosh-1(c~c2 - 5152 cosB), 
1T (Dl) 

1 J1f J21f = - d6 z dB 1 log4(C1C2 - 51 cosB I - 52 cosB 2 )· 
81T2 -1[ 0 

(D2) 

Equation (D2) was actually given over a smaller domain; 
but this is compensated by the numerical factor. Con
sider the transformation 

B2 =tB-w, (D3) 

which effects a rotation of 1T/4 in the coordinate system. 
Judicious translations by 21T enable us to obtain a do
main of integration; 0 "" B "" 21T, 0"" W "" 21T. Integration 
over w is easily performed by noting that 

1 J21f 
21T 0 dw log(a + b cosw + C sinw) 

= lod[ a + (a 2 - b2 - c 2 ) 1/2]. (D4) 

Finally we obtain Eq. (6. 11): 

1 J1f logQ = -2 dB log2[ c1 c2 + (1 + k 2 - 2k COSB)1/2]. 
1T 0 

(6.11) 
APPENDIX E 

The star-triangle transformation was mentioned briefly 
by Onsager in Ref. 2 and later in his talk at the Batelle 
Institute'! We would like to make some observations on 
the geometrical Significance of this transformation. 
First let us define it. The hexagonal Ising model has a 
coordination number of three so that the spins at a 
selected set of sites can be summed to get a triangular 
lattice. At anyone such site we have (see Fig. 5) 

H,'" 

V ST 
+---+ 

D 
K, 

FIG. 5. The star-triangle 
transformation (ST) combined 
with th e dual transformation 
\D). 
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(0) (b) 

2 cosh(H lill + H 2112 + H 31l3) (E1) 

0= N exp\K 1 1l21l3 + K:;;. 113 III + K3 III 1l2)' 

From (E1) we extract three equations, one of which is 

Xl X2 = (YlY2 + Y3)/(1 + YlY2Y3)' 

Xi 0= tanhH i' Y; = tanhK;. 
(E2) 

The others are found by cyclic permutation. We can 
solve for xl by considering (xlx2)(x3xl)/(xr3); but 
solving for the triangular bonds is slightly more diffi"
cult. The solution is 

Yl *Y2 * 0= (Xl *X 2 * + x3 *)/(1 + Xl *X2 *X3 *), 

Xi * 0= tanhH 1 *, Y; * = tanhK; *. 

etc., 

(E3) 

Equation (E3) is in the same form as \E2) with x and Y 
interchanged, and the bonds are replaced by their duals. 
This completes the proof of the transformation implied 
in Fig. 5. From (E2) we can obtain two sets of equations 
which are related to the laws of sines and cosines. They 
are 

sinh2H I 

sinh2K l * 
sin2hH 2 sin2H 3 15 

sinh2K2 * - Sinh2K3 * ' 

cosh2K 1 * 0= - cosh2K2 * cosh2K3 * 

(E4a) 

+ sinh2K 2 * sinh2K 3 * cosh2H 1> etc. (E4b) 

Onsager l noted that the hexagonal bonds 2H l , 2H2, 2H3 
and 2Kl *, 2K2 *, 2K3 * were sides of mutually polar hy
perbolic (hyp.) triangles. He also noted that the sextuple 
2H l' 2K3 *, 2H 2' 2Kl *, 2H 3' 2K2 * in that order formed 
the sides of a completely right-angled hypo hexagon. 
The two representations are, of course, related, but it is 
to the latter that we address ourselves. If we can derive 
the relations (E4) from the right-angled hexagon, we 

'Supported in part by the National Science Foundation and the Research 
Council of Rutgers University. 

IL. On sager, Critical Phenomena in Alloys, Magnets and Superconductors, 
edited by Mills, Ascher, and Jaffee (McGraw-Hill, New York, 1971), p. 3. 

'L. Onsager, Phys. Rev. 65, 117 (1944). 
3M. Suzuki, Progr. Theor. Phys. 46, 1337 (1971). 
'T. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36, 856 (1964). 
'8. Kaufman, Phys. Rev. 76, 1232 (1949). 
'c. A. Hurst, 1. Math. Phys. (N.Y.) 7, 305 (1966). 
'8. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949). 
'E. W. Montroll, R. B. PoUs, and 1. C. Ward, 1. Math. Phys. (N.Y.) 4, 308 
(1963). 

FIG.6. (a) The right-angled hyperbolic 
hexagon, (b) right-angled pentagon, and (c) 
a right triangle. 

A 

(c) 

will have proven the geometrical equivalence. In hypo 
geometry16 any pair of nonintersecting (this excludes 
parallel) lines has a unique perpendicular line. Thus, 
there exists a unique perpendicular to the lines contain
ing 2H 1 and 2Kl * [see Fig. 6a). This perpendicular 
divides the hexagon into two right-angled pentagons. 
Now a right-angled pentagon has the property that the 
hypo cosine of any Side is equal to the product of the 
hypo cotangents of the adjacent sides and also to the pro
ducts of the hypo sines of the opp. sides.1 7 Thus in Fig. 
6b 

cosM = cothB cothE = sinhC sinhD, etc. (E5) 

These equations (E5) may be used to obtain the trigono
metry of the hexagon in the same way as a general tri
angle is analyzed by dividing it into two right triangles; 
Eqs. (E4a) and (E4b) are obtained. Indeed there is a 
complete Similarity between the rules for a right-angled 
pentagon (E5) and a right triangle in hypo geometry. A 
mapping of the five elements of each exists. 

There is a mnemonic device due to Napier which gives 
the trigonometry of a right spherical triangle. This de
vice can be generalized for hypo right triangles and are 
sometimes called the Engel-Napier rules. These rules 
coincide exactly with those of the pentagon with the 
following prescription: Let the sides and angles of a 
right hypo triangle be A, B, C, and A, Il as in Fig. 6c; the 
presence of angles A, Il is inconvenient so we replace 
them by hypo elements L,M for which they are the angles 
of parallelism.1 8 Thus A is the complement of the guder
mannian of L or 

COSA = tanhL, cosll = tanhM. (E6) 

Then the elements A *, C, B *, L, M related to the right 
hypo triangle may be assigned in that order as consecu
tive sides of a right-angled pentagon. The same trigono
metric equations hold! 

'The correlations along the diagonal can be obtained by distorting the dimer 
lattice so that diagonals become columns while rows remain the same. 

lOp. Kasteleyn, 1. Math. Phys. (N.Y.) 4, 308 (1963). 
IlL. P. KadanofT, Nuovo Cimento B 44, 276 (1966). 
1'1. Stephenson, J. Math. Phys. (N.Y.) 5, 1009 (1964). 
13T. T. Wu, Phys. Rev. 149, 380 (1966). 
I'R. 1. Baxter, Ann. Phys. (N.Y.) 70, 193 (1972). 
I' At the critical point this ratio is unity. 
I'D. M. Y. Sommerville, The Elements of Non-Euclidean Geometry (Dover, 
New York, 1958), Chap. II. 

I'This theorem is given as a problem on p. 87, Ref. 16. 
I'See Ref. 16, Chap. II, Sec. 27. 
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On the inverse problem for a hyperbolic dispersive partial differential equation 

V. H. Weston 
Division of Mathematical Sciences, Purdue University, Lafayette, Indiana 47907 
(Received 3 July 1972) 

The inverse problem for a two-dimensional (space-time) hyperbolic partial differen tial equation, with coefficients, functions of 
the spatial variable only, is considered. Exterior to a region of compact support in the spatial variable, the equation reduces to 
the wave equation. and, from knowledge of the solution in the exterior region (namely in terms of reflected and transmitted 
waves for a prescribed incident wave), the problem is to deduce the coefficients in the interior region. This is achieved by treat
ing the problem as a Cauchy initial value problem and using the Riemann function to deduce a dual set of integral equations. 
The coefficients or linear combinations of them are deduced from the solutions of the integral equations. The question of 
uniqueness is partially answered, by estimating the domain of convergence of the Neumann series. The application of the 
analysis to electromagnetic scattering from a slab of varying conductivity and permittivity is indicated. 

x - f > O. In addition it can be shown that, for x :s 0, 

u(x, f) = u:(x - t) + u~(x + t), 

The inverse problem consists of determining the coeffi
cients of a partial differential equation from the know
ledge of the asymptotic behavior of the solution,l-4 In 
many of the physical problems involving spatial and time
independent variables, with the coefficients depending 
upon the spatial variable only, the analysis is based 
upon the determination of the coefficients from the 
spectrum of the partial differential operator associated 
with the spatial variable. The time-dependent approach 
was considered by KaY,5.6 who transformed the Gel'fand 
- Levitan equation 7 into a resulting time-dependent 
integral equation. Sondi and Gopinath8 and recently 
Niznik9 have examined the time-dependent problem 
directly. 

where the reflected component u:(s) vanishes for s < 0 
and that,for x?: l,u(x, t) = u~(x - f), where the trans
mitted wave satisfies the causality condition u~(s) = 

Here we consider the time-dependent inverse problem 
directly by making use of the theory of hyperbolic dif
ferential equations. The equation to be conSidered, of 
two independent variables, has coefficients functions of 
the spatial variable only, but contains a dispersive term, 
Le., a term involving the first derivative of the time 
variable. It is shown that a dual set of generalized 
Gel'fand-Levitan type integral equations are obtained, 
involving the transmission and reflection coefficients. 
The solution of these equations leads to the determina
tion of the unknown coefficients of the original partial 
differential equation. Application of the results to elec
tromagnetic scattering is considered. 

CAUCHY PROBLEM AND THE SCATTERING 
OPERATOR 

The differential equation to be considered is the follow
ing 

(1) 

0, s > O. 

For an arbitrary incident wave of the form u~(x + 0 
propagating in the direction of the negative x axis, the 
class of twice continuously differentiable functions to 
be considered will be those for which u~(s) = 0 for 
s < O. These will give rise to reflected wave component 
u.':"{x- f) in the domain x ?: l, such that u.':"(s) = 0 for 
s > 2l and a transmitted wave u!.(x + 0 in the domain 
x :s 0, such that u!.(s) = 0 for s < O. 

In order to obtain the functional relationship between 
the reflected, transmitted, and incident portions the 
following lemma is needed. 

Lemma: The solution to Eq. (1) subject to conditions 
at x = v, where v lies outside 0 < x <Z, 

u(v, t) = v(v - t) + w(v + 0, 
ux(v, f) = v'(v - t) + w'(v + 0 

is given by 

u(x, f) = exp[1{ [A(T) + B(T)]dTJ 

x (w(x + t) - J;v_xKJx,y, v)w(y + t)dY) 

+ eXP[i{[A(T)-B(T)JdT] 

x (v(x - t) - t K+(x,y, v)v(y - f)dY) , 
\' 2 u-x 

(2) 

where A, B and their derivatives and C and continuous 
functions of compact support vanishing outside the do
main 0 < x < l. B(x) will be taken to be negative corres
ponding to most physical situations where energy is 
absorbed. An application of the above differential equa
tion to electromagnetic theory will be given below. where K ± (x, t, v) satisfy the differential equation 

For an arbitrary incident wave u~(x - t) propagating in 
the direction of the positive x axis, such that u :(s) = 0 
for s > A, there is no loss in generality if we take A = 0, 
since this can be achieved by a linear transformation of 
the variable t, without affecting Eq. (1). Hence we will 
consider the class of twice continuously differentiable 
functions u ~(s) which vanish for s > O. It follows that 
Eq. (1) subject to initial conditions 

u(x,O) = u~(x), 

can be transformed to a Volterra integral equation for 
t?: O,from which it may be deduced that u(x, t) = 0 for 
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- - - ± B(x) - + - + D±(x) K± = 0 [ a2 a2 (a 2) ~ 
ax 2 at 2 ax at 

and boundary conditions 

K±(x,2v-x,v) =0, 

K±(x,x,v) =-1J
v
D±(T)dT, 

x 

with D ±(x) = C(x) - %A'(x) ± %B'(x)i(B2 - A2). 

A direct proof is obtained by expressing Eq. (1) in terms 
of characteristic coordinates (~, 1/), where ~ = x + t 
and 1/ = x - I, yielding the following differential equation: 
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L(~, 1))u = O. 

Then on employing the Riemann function 10 g(~, 1), ~O, 1)0)' 

which satisfies the adjoint equation, and the following 
boundary conditions 

g = exp if [A(r/2) + B(T/2)]dr ~ 
Lo'Q ) 

So'Qo 
for ~ = ~O, 

g = exp -H [A(r/2) - B(r/2)]dr ( 
i:'Qo ) 

to'Qo 
for 1) = 1)0' 

it follows that 

where the integrals are along the line ~ + 1) = 2v and 
P and Q have characteristic coordinates (2v - T/o' T/o) 
and (~o, 2v - ~o), respectively. The first integral is 
reduced by noting that g as a function of ~o and 1)0 satis
fies the differential equation 

and boundary conditions the same as above. From this, 
the differential equation and boundary conditions for 
ag/a~ as a function of (~0,1)0) are easily obtained. Upon 
transforming of the variables, ~ = y + t, 1) = 2v - y - t, 
~o = x + t, and 1)0 = x - t, the resulting expression in 
terms of KJx,y, v) is obtained. The second integral is 
reduced in a Similar manner. 

Expression (2) with x oS 0, V = 1, may be employed to 
obtain the following functional relationship between the 
incident, reflected, and transmitted components: 

(3) 

From the differential equation and associated boundary 
conditions for K +' it follows that K. may be dec omposed: 

K.(x, t, 1) = L.(x - t) + M.(x + t), 

x oS 0, x oS t oS 21 - x, 

where 

L .(s) = L.(- 2Z) for s oS 21, 

M .(s) = 0 for s oS 0, 

M .(21) + L)- 2Z) = 0, 

If the domain of definition of M. (s) is extended as follows, 

M.(s) = M.(21) for s ~ 21, 

Eq. (3) can be partitioned to yield 

u~(1) = exp rtf' (A - B)drl~~(1) + / L.(1) - S)u~(S)dS), 
~ 0 ~~ Q (4) 

u~W = exp(i~\A - B)d'l~M.(~ + s)u!(s)ds (5) 

for transmitted waves u~(s) which vanish for s > O. The 
above yields u~(1) = 0 and u~W = 0 for T/ > 0 and ~ < 0, 
respectively. 

The inversion of (4) yields the forward scattering opera
tor (with direction of incidence along the positive x axis), 
mapping the incide!1t wave into the transmitted wave 

u~(T/) = exp [- i~\A - B)d~~~(1) + fT.(T/ - s)U~(S)dS), 
(6) 

where 
o 

T.(1)) + L.(1) + I L. (1) - y)T .(y)dy = 0, T/ oS o. (6) 
Q 

The back-scattering operator (direction of incidence 
along the positive x axis), mapping the incident wave 
into the reflected wave is given by 

o 
u~W = I R.(~ + s)u!(s)ds, (7) 

-t 
where 

R+W = M.W + t M +(~ + y)T.(y)dy. (7') 
-t 

In a similar manner the scattering operator may be ob
tained for the direction of incidence in the negative x 
direction. KJx, t, 0) has the decomposition 

K Jx, t, 0) = - L Jx - t) - M jx + t), x ~ 1, - x oS t oS x, 

where 

Ljs) = Lj2Z) for s ~ 21, 

MJs) = 0 for s> 21, 

MjO) + LJ2Z) = 0, LjO) = - it Djr)dr. 
o 

Extending the domain of definition of M Js) as follows, 

MJs) =MjO) for sos 0, 

one obtains 

u~W = exp _~~I (A + B)d~(U!W + ~t Lj~ - s)U!(S)dS) 

!J 11 j 21-Q 
U~(T/) = exp -,i 0 (A + B)d 110 M Js + 1)u!.(s)ds, 

(8) 

(9) 

for transmitted waves u!(s) which vanish for s < O. The 
forward- and back-scattering operators are obtained as 
before: 

U!.w = exp[iJo\A + B)d~(U~W + ~tTj~ - S)u~(S)dS), 

where 

(10) 

(11) 

TJ~) + LJ~) + ~t Lj~ - s)Tjs)ds = 0 for ~ ~ 0, (12) 

(13) 

RELATIONS BETWEEN THE SCATTERING KERNELS 

The scattering kernels R ±I T± are not completely inde
pendent of each other. To develop relationships between 
them, consider first the case of the incident wave pro
pagating in the positive x direction. Equation (2) with 
v = 0, combined with causality, is used to obtain, for 
x ~ O,x > t, 
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u~(x - t) - t K+(x,y, O)u~(y - tidy + G(x) 
-x 

x (u~(x + 0 -l:Kjx, y, O)u~(y + t)dY) = 0, (14) 

where 

G(x) = exp (- ~xB(T)dT) (15) 

Since u~ may be expressed in terms of u~ which is ar
bitrary, the above yields 

K+ (x, t, 0) = G(x) (R + (x + t) - (K_(x, y, O)R +(y + tldY) 

(16) 

for - x ~ t ~ x, X 2: O. In particular, for x 2: 1, it follows 
from the differential equation that K+(x, t, 0) may be 
decomposed in the form 

K+(x, t, 0) = G(Z )[P)x + t) + Q+(x - t)], 

P+W =R+(~) + Iaf.R+(S)Lj~ - s)ds, (17) 

21-~ 

Q + (1/) = Ia M J1/ + siR + (s)ds, 1/ 2: o. (18) 

Note that P)~) and QJ1/) vanish for ~ ~ 0 and 1/ 2: 21, 
respectively, and that P)O is constant for ~ 2: 21. Using 
the identity 

1 -1: K+(x,y, Oldy = GW(l -l:KJx,y, O)dY) , x 2: 1, 

one finds the value of the constant to be MjO); hence 

P+W = MjO) for ~ 2: 21. 

On employing Eq. (2), for x 2: 1, t > x, one obtains an equa
tion similar to Eq. (14), but with the right-hand side 
replaced by 

u~(x - t) exp(iIa
I 

(A - B)dT). 

Since u~ and u~ may be expressed in terms of u~ using 
the scattering operators, one obtains, for arbitrary u~, 

(19) 

This last equation allows one to compute T+ from know
ledge of the kernels T_,R ±. 

The case for propagation of the incident wave in the 
direction of the negative x axis is treated in a similar 
manner. For x ~ 1, and x ~ t ~ 21- x, one obtains 

(J21-t ) G(x)Kjx, t, I) + G(Z) \Rjx + t) + x K+(x,y, l)Rjy + tidy 

and, in particular for x ~ 0, 

KJx, t, l) = - G(l){PJx + t) + QJx - til, 

where P_ and Q_ are defined as: 

PJ~) =RJ~) + tl Rjs)L+(~ - s)ds, 
f. 

21 
Qj1/) = J RJs)M+(1/ + s)ds, 

-n 

and it can be shown that, 

pj~) = M +(21) for ~ ~ 0, 

= 0 (20) 

(21) 

(22) 

TJ1/) =G(Z)[QJ1/) +M+(2Z)] for1/2: O. (23) 
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INVERSE PROBLEM 

The inverse problem consists of determining the co
efficients A, B, C, when the scattering kernels R ±' T± 
and the attenuation factor 

are given. In actual physical practice, these kernels 
are measured directly by using incident waves which 
closely approximate a delta function. 

First consider the case where the direction of incidence 
is in the positive x direction. For a fixed x, lying in the 
domain 0 ~ x ~ 1, use Eq. (2) to express u+(x, t) in terms 
of the incident and reflected components on the boundary 
x = O. Similarly express u+ (x, t) in terms of the trans
mitted component on the boundary x = 1. Equate these 
two expressions, and represent u! and u~ in terms of 
u~, by employing the scattering operators. Since u~ is 
arbitrary, one obtains the following integral equations: 

where Eqs. (24a) and (24b) hold for x ~ t ~ 21 - x and 
21 - x ~ t, respectively, and 

S)y,t) =R)y + t) + tR)y + s)L)s - tlds. 
x 

In a similar manner, the following set of integral equa
tions is obtained for the direction of incidence in the 
negative x direction: 

J
21-X 

G(x)LJx - t) + G(Z)SJx, t) + G(Z) K)x,y, Z)SJy, tldy 
x (25a) 

= 1 ~ Kjx, t, O)G(X), (25b) 

where Eqs. (25a) and (25b) hold for - x ~ t :so x and 
t ~ - x, respectively, and 

S_(y, t) =Rjy + t) + tRJs + y)LJs - Ods. 
t 

For fixed x, the above constitutes a set of integral equa
tions, where L± and S± are known functions since they 
can be determined from R ± and T±. However, G(x) is 
unknown, but, for fixed x, can be taken as a parameter 
which occurs linearly, if one solves for the unknown 
quantities KJx, t, I) and G(x)Kjx, t, 0). 

Note that if only R+ and T+ are known, then system (24a), 
(24b) only would be used. However, Eq. (24b) is a 
Fredholm equation of the first kind (with non-self
adjoint continuous kernel). For t 2: 21 + x it can be 
shown that this equation is independent of t, and thus 
need only be conSidered for t in the interval 
21 - x :so t ~ 21 + x. The question of uniqueness for this 
equation (which remains to be proved or disproved) is 
extremely critical, since the dimension of the null space 
of the operator could be infinite, in which case there 
would be an infinite set of solutions. 

However, if R_ and T_ are also known, then the system 
(24a), (25a) may be used, yielding a Fredholm equation 
of the second kind (with continuous kernel). At x = 0, it 
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is seen that (24a) yields K )0, t, 1) directly, and,.x = 1, 
Eq. (25a) yield KJl, t, 0) directly. This suggests that 
the Neumann series should converge in some neighbor
hood of x = 0 and x = I. Since the kernel depends upon 
the values of R± (s) for 0 :s s:s 21, TJs) for 0 :s s:s 2x, 
and T (- s) for 0 :s s 5 2([ - x), by taking a sup norm 
of the+se quantities over their respective intervals and 
estimating the norm of the operator, it can be shown that 
there is a neighborhood about x = 0, and x = 1, for 
which the Neumann series converges. For strong enough 
conditions imposed upon the coefficients A, B, and C, the 
Neumann series will converge for all values of .x, 
o :s x:s I. 

Apart from the above case, the question of uniqueness 
remains to be answered. Since the solution will be re
quired for x in 0 :s x:s I, nonuniqueness would not pose 
a problem (from the practical sense) if it occurs only 
for a discrete set of values of .x. 

If system (24a), (25a) is used, will their solution satisfy 
Eqs. (24b) and (25b)? This can be partially answered as 
follows. Define the left- hand sides of (24b) and (25b) 
as j(x, t) and g(x, t), respectively. Then j(x, t) and 
g(x, t) will be constant for t > 21 + x and t < - 2l + x, 
respectively. If KJx, t, l) and KJx, t, 0) are solutions of 
(24a) and (25a), it can be shown, using the relations be
tween the scattering kernels, that j(x, t) and g(x, t) must 
satisfy a set of coupled integral equations not containing 
K or K . These can be reduced to a single homogeneous 
integral equation of the second kind for either g(x, t) or 
j(x, t). Hence, if it has only the trivial solution, then 
j (x, t) and g( x, t) must vanish identically. In this case 
the solution of system (24a), (25a) will automatically 
satisfy (24b), (25b). 

Once the solution of the set of integral equations has 
been found in the form 

KJx, t, 1) = G (x)K! (x, t) + K~(x, t), 

G(x)KJx, t, 0) = G(x)K~x, t) + K~(x, t), 

where G(x) is the unknown parameter,B(x) has to be 
determined. This is achieved by employing the boundary 
condition 

K)x,x, l) -1(Jx,x, 0) = L+(O) + ~B(x), 

which yields the following nonlinear differential equa
tion for G (x) as a function of x: 

~ r:; = K~(x,x) + G(x) [L/O) + K~(x,x) - K~(x,x)j 
- [G(x)j2 K!(x,x). 

This equation is linearized upon the substitution 

yielding a second-order linear differential equation for 
H(x). Since G(O) and G(l) are known, boundary conditions 
can be imposed to determine any arbitrary constants. 

I Z. S. Agranovich and V. A. Marchenko, The In!'erse Problem of ScallerinK 
Theury (Gordon and Breach, New York, 1963). 

'L. D. Faddeyev and B. Seckler, J. Math. Phys. (N.Y.) 4, T'. (1963) . 
. 1 R. G. Newton, SIAM (Soc. Ind. App. Math.) Rev. 2, 346 (1970). 

B(x) is then determined from the relation 

d 
B(x) = - dx In[ G(x)]. 

The remaining coefficients are determined from the 
boundary condition 

K/x,x, l) + Kjx,x, 0) 

= Iax
[C - tA2 + tB2jd1 - ~A(x) + L/O). 

However, this will yield only the following combination 
of A and Cj 

lId 
C(x) - 4 A2 (x) -"2 dxA(x), 

and either A(x) or C(x) must be prescribed initially, to 
determine the coefficients explicity. In the example, 
that follows C(x) = o. 

APPLICATION TO ELECTROMAGNETIC THEORY 

Maxwell's equations for electromagnetic propagation 
in a direction along the z axis normal to a slab of vary
ing permittivity E{z) and conductivity a(z), reduce to the 
following equation for the electric intensity: 

(26) 

where the permeability Ilo is constant. Exterior to the 
slab of thickness L, i.e., z < 0 and z > L, the permitti
vity is constant E = EO and a = O. Both E and a will be 
assumed to be sufficiently smooth functions of z so that 
the preceding analysis holds and that E will be positive. 

The equation will be transformed to the form of (1), by 
a change of variable from z to x as fOllows (similar 
analysis was used by Sharpell): 

1 = x(L). 

Equation (26) reduces to the form 

Exx - Ett + A(x)Ex + B(x)Et = 0, 

where 

A(x) = - J! [ll oEj-1/2, B(x) = - aiE, 

for which the preceding analysis may be employed. 
Once A(x) and B(x) are known for 0 5 X :s I, dz) and 
a(z) can be recovered through the following relations: 

[IlOEOP/2Z = f exp(-IaTA (S)dS)d1, 

[E(Z)/ EOp/2 = exp UX 

A (1)d1) , 

a(z) = - dz)B(x(z)). 
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The structure of the totally symmetric unit tensor operators (and their conjugates) in U(n) is examined from the viewpoint 
of the pattern calculus and the factorization lemma. The geometrical properties of the arrow patterns of the fundamental 
projective (tensor) operators are demonstrated to be the origin of the existence of simple structural expressions for a class of 
reduced matrix elements of the totally symmetric unit projective operators. An extension of the pattern calculus rules is 
given whereby these matrix elements can be written out directly. This class of reduced matrix elements is sufficient to per· 
mit the construction of the general totally symmetric unit tensor operator. The canonical splitting of the multiplicity in 
U(3) is similarly shown to be implied uniquely by the geometrical properties of the arrow patterns of the fundamental pro· 
jective operators and their conjugates. This fact is used to construct explicitly the class of U(3) unit tensor operators having 
maximal null space. Explicit expressions for a large class of Racah coefficients are also given, and the implications of their 
limit properties discussed. 

1. INTRODUCTION 

One of the fundamental problems in the application of 
symmetry techniques to quantum mechanics is the con
struction of a suitable basis for the set of all operators 
mapping the set of all unitary irreducible representa
tion spaces into itself. As is well known, such operators 
may themselves be characterized by representation 
labels-this is the tensor operator claSSification. This 
classification is, however, incomplete for the general 
case. SpeCifically, it is incomplete in the sense that 
there exist, for the general case, several tensor opera
tors which are labeled by the same state vector labels 
(the so-called Gel'fand patterns which specify the sub
group properties), and which map a specified irreducible 
representation (irrep) space [m]n into a specified irrep 
space [m']n' 

It was early shown1 that a basis for the set of irreduc
ible tensor operators transforming like the state vector 
labeled2 

( 
[M]n ) 

(M)n-l 

could be labeled by a second set of patterns {(r)n-l}, 
which is in one-to-one correspondence with the subgroup 
labels {(M)n_l}' i.e., for speCified irrep labels [M]n, the 
two sets {(r)n-l} and {(M)n_l} are equal. This led 1 to 
the deSignation 

\ 

(r)n-l) 
[M]n 

(M) n-l 

for a unit tensor operator or, as it is also called, a 
Wigner operator. 

(1. 1) 

Despite the equality of the numerical arrays contained in 
the two sets of labels {(r)n-l} and {(M)n-lj, the struc
tural significance of the set {(r)n_l} is completely dif
ferent 1,3,4 (unless otherwise proved) from that of 
{(M)n-l}, since this latter sei of (Gel'fand) labels derives 
its Significance entirely from the existence of the Weyl 
branching law for the subgroup chain 

U(n) ~ U(n - 1) ~ •.. ~ U(l). (1. 2) 

No such law is known to hold for the set of patterns 

1957 

{(r)n_l}' Accordingly, we refer to (r)n-1 as an operator 
pattern and (M)n_1 as a Gel'fand pattern to emphasize 
this distinction. [An exception occurs for n = 2 where a 
very special type of transformation between operator 
patternS-isomorphic to a U(2) transformation-may be 
defined. 5] 

What then is the significance of an operator pattern? 
Finding a complete answer to this question comprises, 
we believe, the principal unsolved problem in the theory 
of tensor operators in the unitary groups. We make this 
assertion because the formal algebra of the U(n) 
Wigner operators has been given completely, starting 
with the work of Ref. 1 and continuing through the work 
of Refs. 3-6. (The significance of the associativity law 
for the multiplication of Wigner operators was first 
noted in Ref. 6.) It is a remarkable fact that the structure 
of this algebra-termed the U(n) Racah-Wigner calculus
can be given, knowing1 but a single structural feature of 
the operator pattern (r) n-1: The Wigner operator (1. 1) 
maps an arbitrary vector belonging to the irrep space 
labeled by [ml n into either the zero vector or into a vec
lor belonging to the irrep space labeled by [m]n + [6.(r)ln' 
where 

(1.3a) 

(1. 3b) 

Consider now that we select any operator pattern7 : 

(
[M]n ) 
(r)n-1 • (1.4) 

Then [6.(r)]n follows from the rule (1. 3). We call each 
such [6.(r)]n a 6. pattern belonging to [M]n' The mapping 
(1. 3) of operator patterns onto 6. patterns is clearly 
many-to-one, in the general case. (Whenever it is one
to-one, the Wigner operator is uniquely labeled by its 6. 
pattern. This occurs, for example, for all the totally 
symmetric Wigner operators, (pOO' •• 0) .) 

Suppose we now select any 6. pattern [6.]n belonging to 
[M] n' Then the set of Wigner operators 
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! [M]n : all (r) n-1 such that ( (1. 5) 
(((r)n-1\ ) 

t (M)n-i [.6.(r)]n = [.6.}n; (M)n-1 arbitrary ~ 
defines the multiplicity set of Wigner operators having 
the prescribed pattern [.6.) n' 

The principal problem alluded to above can now be stated: 
To underslandand elucidate the structure which differen
tiates between the Wigner operators ([Mln) belonging to 
the multiplicity set of a prescribed t. pattern. This im
plies that one must also determine that structural pro
perty which assigns a definite operator pattern to a spe
cific Wigner operator in the multiplicity set. (In this 
motivating discussion, we have assumed implicitly that a 
solution exists and is unique.) 

This program appears to be, and is, a sizeable under
taking, particularly, when we insist that there exists a 
canonical solution (to within equivalence, if necessary), 
where we use the term canonical in the sense of being 
free of arbitrary chOiceS aside from phase (±). 

Let us now inquire as to what properties of these Wigner 
operators belonging to a given multipliCity set could 
possibly distinguish among them. The first property 
which comes to mind is the null spaces of the opera
tors.9 The null space of the Wigner operator (1. 1) is the 
set of all irrep spaces which are annihilated by the opera
tor, i.e., the set of all irrep spaces with labels [m}n such 
that 

/~~]n_1) ([m]n )~ _ 0 

\(M)nn_1 \(m)n-1 V - (1. 6) 

for all Gel'fand patterns (m)n-1 and (M)n-1' The exis
tence of such null spaces is assured by the properties 
of the intertwining number-the number of times an ir
rep [m 'In is contained in the direct product [M]n IS! [m]n' 

Let us be explicit and state the three structural proper
ties which we believe will ultimately be proved, and 
which will be decisive in establishing the existence of a 
canonical labeling for all Wigner operators of U(n). Let 
(r1), (r2), ... , (rmr) denote the operator patterns belong
ing to a given multiplicity set, and let :n(J'.,), k = 1,2, 
. . . ,~ denote the null space of the corresponding 
Wigner operator: 

Conjecture 1: The operator patterns are simply or
dered by the inclUSion property 

of the null spaces. 

Conjecture 2: The unique numerical assignment of 
the labels in an operator pattern is a consequence of 
limit properties. 4 

Conjecture 3: The uniqueness of the canonical label
ing is a consequence of the indecomposability10 of the 
associated Wigner operators. 

A proof of these three conjectures would constitute the 
basis for the canonical resolution of the tensor operator 
labeling problem. 

Let us remark that Conjectures 1-3 have been proved4 

for all the adjoint tensor operators in U(n) (for all n = 
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2,3, ... ). It has also been shownll that for U(3) there 
exists a canonical splitting of all multipliCities; that is, 
the labeling of all Wigner operators in U(3) is unique and 
free of arbitrary chOices, to within equivalence repre
senting the choice of 1,2,3 explicit in the Weyl canoni
cal labeling of state vectors within an irrep. 

One of the principal aims of the present work is to de
monstrate by explicit construction that this canonical 
splitting in U(3) verifies Conjectures 1-3. 

Although a canonical resolution of the multiplicity pro
blem for U(3) has been shown to exist, the explicit con
struction of the associated set of Wigner operators and 
Racah invariant operators (both of which now are unique 
to within phase) is still a formidable task. Complete re
sults have been given only for the tensor operators 
having the irrep labels [210} and [420], i.e., the adjoint12 
(210) ("octet") and the "27-plet operator" (420).13 

The construction of the multiplicity free operators 
(pO' •. 0), even though there is no point of principle in
volved Whatsoever, is itself a sizeable task: This has re
cently been done by Alisauskas et az.1 4 and by Chacon 
et al.1 5 

It is the purpose of the present series of three papers to 
illustrate and discuss the structural properties of the 
canonical unit tensor operators. There are two aspects 
to this program: (1) the elucidation of the structure of 
the multipliCity-free tensor operators and (2) the verifi
cation of Conjectures 1-3 by actual construction of the 
unit tensor operators in a multiplicity set. 

The first part of this program is by no means trivial, 
although much easier than the second. The mere writing 
out of complicated matrix elements--even though essen
tial-is but the first step and of itself contributes very 
little to one's understanding of the origins and signifi
cance of such expressions. There are two indispensable 
tools which we have found can render such otherwise 
complicated results comprehensible: the factorization 
lemmall .3 and the pattern calculus. 16 By exploiting 
these tools to the fullest extent, one is able to see 
through the superficial complexity of the individual 
matrix elements and understand quite directly the struc
ture of the answers-a structure which is often both ele
gant and elementary. 

Let us now summarize the plan of this series of papers . 
In the present paper (I), we give in Sec. 2 a resume of 
the basic tools required in the subsequent developments. 
In Sec. 3, the totally symmetric tensor operators in U(n) 
are conSidered, the emphasis, as mentioned, being on the 
structure of the results. The Significant contribution of 
this section is an extension of the pattern calculus rules. 
This generalization allows one to read off directly from 
the arrow patterns the complete matrix element ex
preSSions (except for phase) for all totally symmetric 
projective operators (and their conjugates) having either 
(1) arbitrary upper operator patterns and extremal 
lower patterns or (2) extremal upper operator patterns 
and arbitrary lower operator patterns. The totally sym
metric Racah functions are given in Sec. 3E, and the im
plications of the limit properties discussed. 

We restrict our attention to U(3) in Sec. 4, demonstrating 
that the origin of the canonical splitting has the same 
geometrical basis in terms of the arrow patterns as oc
curs for the totally symmetric operators. [Unfortunate
ly, this feature does not directly generalize to U(n)
hence, the reason for considering U(3) only.] We con-
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struct in detail the class of U(3) tensor operators having 
maximal null space; this class necessarily includes all 
multiplicity free operators. The present paper con
cludes by giving an algorithm whereby all U(3) tensor 
operators can be constructed. 

While the considerations of U(3) in this paper are logi
cally complete (in the sense that all answers are given 
fully), we relegate to a second paper (II) the nontrivial 
task of verifying that our U(3) results prove Conjectures 
1-3 for U(3). In Paper III, we will resume our general 
studies of the structural properties of the canonical 
tensor operators in U(n). 

2. RESUME OF BASIC RESUL TS1
7 

A. The general coupling laws 

The formal algebra of Wigner operators has been deve
loped in Refs. 1, 3, and 4, and the reader is referred to 
these papers for a more detailed explanation of the nota
tions and proofs of the results summarized in this sec
tion. 

The first basic result is the coupling law for Wigner 
operators. This law is given symbolically as follows: 

( 1{R}~ ~ ((r,,)) 
[M'] [M] = [M"] , 

• (W)· (M") 

(2. 1) 

where the dots in the left-hand Side indicate that the res
pective patterns are summed over: (1) The lower Gel' 
fand patterns are coupled by Wigner coefficients (indi
cated by (W»), and (2) the upper operator patterns are 
coupled by the Racah invariant operators (indicated by 
{R}). In detail, Eq. (2. 1) takes the form as follows: 

~ 
(r") ) 

O(A')(A) [M] + [~(A)] = 6 
(M') 

(M") 

[M] + [MA)] [M] 

\ 
( ~ (

(A) ) ~ ~) 
= (~~~1 (M") ~:,]) (M) 

x ~ AM] + [~(N)~(~:~hM~U~:]\ /~~]). 
l \ (r) )\~r'O~r) )~\M,~I \I(M) (2.2) 

The summation over (r') and (r) is over all operator 
patterns such that [~(r")]n = [Mr)]n + [~(r')]n. How
ever, it is not necessary to specify this explicitly, since 
the Racah invariants are, by definition, zero whenever 
this condition is violated. A similar, but more restricted 
statement3 ,4 applies to the summation over (M') and 
(M). [We generally adopt the practice of omitting the 
subscripts on [M]n' (M)n-l' etc., whenever they are 
clearly implied.] 

The second basic coupling law follows from Eq. (2. 2) 
upon using the subgroup reduction law for Wigner opera
tors. 1 ,4 This is the coupling law for U(n) : U(n - 1) pro
jective operators and is expressed symbolically as 
follows: 

[ . J {R} [·l [(r,,) l 
[M'] [M] = [M]~, [~] 

. [R]· (y ) 

(2.3) 

The explicit form of this symbolic coupling is 

(2.4a) 

where we have introduced a new object, called a square
bracket invariant (in analogy to the curly-bracket, or 
Racah, invariant): 

in which 

(N) = ~Y']n-l~ . 
n-l (A') 

n-2 
(2.4c) 

The first factor on the right-hand Side of definition 
(2.4b) is a U(n): U(n - 1) reduced Wigner coefficient; the 
second factor a U(n - 1) Racah invariant-its eigenvalue 
depends only on the labels [m]n-l. Thus, the square
bracket invariant, denoted [ ... ], is a U(n - 1) invariant. 
[Note that, for n = 2, projective operators become 
Wigner operators, the square-bracket invariant becomes 
a Wigner coefficient, and Eq. (2.4) reduces (properly) to 
the coupling law for Wigner operators.] 

The coupling law (2.3) for projective operators will be 
used frequently in one form or another in the work to 
follow. [Further discussion of Eq. (2.3) can be found in 
Refs. 3 and 4.] 
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The following brief notational summary is included to 
aid the reader in identifying the symbols used to denote 
the basic quantities which enter into the coupling laws 
described above: 

(:) , unit ten'o, opento, I of. Eq. (1. 1)1; 

[] , unit p,ojeetive operato, lof. Eq. (2.3)1; 

: Racah invariant operator 
[cf. Eq. (2. 2)]; 1000l 

[(:)0 OJ : square-bracket invariant operator 
[cf. Eq. (2.4)]. 

B. The pattern calculus rules 

It is a remarkable fact that the explicit matrix elements 
of all extremal unit U(n): U(n - 1) projective operators 
can be calculated from a few simple rules of the pattern 
calculus. 16 In particular, this class of explicitly known 
projective operators includes all elementary operators 
of the form [ik 0n-kl and [On_k - ikl (a dot over a 
numeral implies that the numeral is repeated a number 
of times equal to the subscript), which themselves are a 
basis for constructing all U(n) tensor operators. 

The pattern calculus proceeds by considering a given 
unit U(n) : U(n - 1) projective operator 

(2.5) 

where both (r)n-l and (Y)n-I are extremal patterns. To 
this operator we assign a t:. pattern of two rows, corres
ponding to the shifts [t:.(r)]n and [t:.(y)1n_1. 18 From the t:. 
pattern, we construct an "arrow pattern" and write out 
the U(n) : U(n - 1) reduced Wigner coefficient by the fol
lowing rules. 

The arrow-pattern rules 

Rule 1: Write out two rows of dots, as shown: 

• • • n dots 

n - 1 dots. 

Rule 2: Draw arrows between dots as follows: Select 
a dot i in row n and a dot j in row n - 1. If t:.in(r) > 
t:.jn_l(y),draw t:.in(r) - t:.jn-I(y) arrows from dot i to 
dot j; if t:. jn- I (I') > t:.in(r), draw the arrows from dot j to 
dot i. Carry out this procedure for all dots in rows n 
and n - 1. This yields a numerator arrow pattern with 
arrows going between rows. 

Carry out this procedure for dots within row n and dots 
within row n - 1. This yields a denominator arrow 
pattern with arrows going within rows. 
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Rule 3: In the arrow patterns, assign the partial 
hook Pin to dot i, i = 1,2, ... ,n, in row nand P'n- I to 
~ot~,)j=1,2, ... ,n-1,inrOWn-1. (p ij ==~ij + 
J - z. 

Rule 4: In general, there will be several arrows going 
between two dots in the arrow patterns. Assign to the 
first arrow the factor 

p(tail) - p(head) + e(tail), 

to the second arrow, the factor 

p(tail) - p(head) + e(tail) + 1, 

etc., until all arrows going between the same two dots 
have been counted: 

e(tail) == 1, if tail of arrow on row n - 1, 

== 0, if tail of arrow on row n. 

Rule 5: Write out the products 

N2 = I product of all factors for numerator 
arrow pattern I , 

n2 = Iproduct of all factors for denominator 
arrow pattern I. 

The net effect of these rules is to make the associations 

arrow algebraiC N 

[
(n] . 
(M) ~ t:. pattern ~ ~ == Ii . 
(y) 

pattern factor 

The arrow-pattern rules clearly yield the same result if 
we effect an integral shift t:.i",(r) -) ~in(r) + X, i = 
1,2, ••• ,n, t:.in-1(y) -) t:.in-1(YI + X, z = 1,2, ... ,n-1. 
Thus, the rules apply to t:. patterns which contain nega
tive integers. In particular, all operators of the form 
[Ok - i n- k] are obtained from the rules above. 

The value of the matrix element of the extremal pro
jective operator (2. 5) then takes the symbolic form 

~r)~ [M] 
(I') 

[m] ) n = (phase) IN In I. 
[m]n-l (2.6) 

C. Projective functions and /::, pattern functions 

The final labels in the reduced matrix element (2. 6) are 
implied by the initial labels. Accordingly, we may inter
pret a matrix element of a unit projective operator as 
defining a unit projective function. Thus, for arbitrary 
operator patterns (r) and (r'), we define a unit projec
tive function4 

~r)J [M] 
(r') 

(2.7a) 

by giving its value on the set of all U(n) and U(n - 1) 
irrep labels, 

[m] == [m1n m2n" 'mnn ], 

[m'] == [ml,n-lm2,n-l" 'mn-l,n-l], 

(2.7b) 

(2.7c) 
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which satisfy the Weyl branching law: 

~(r)] (: ~ ~ M [m] = [m] + [A] 
~r}) [m'] - [m'] + [A'] 

[m]\ 
[m'¥' (2. 7d) [(r)~ [M] 

(r') 

in which 

[A] = [A(r)]n = [A1A2'" An]' 

[A'] = [A(r'),l = [A' A' ••• A' ] In-l 1 2 n-l • 

(2.7e) 

(2.7f) 

Furthermore, the value of the projective function is de
fined to be zero unless [m] + [A] and [m'] + [A'] satisfy 
the Weyl branching law (the so-called lexical or "be
tweenness" conditions). 

{We have attempted to introduce a notation in Eq. (2. 7d) 
which avoids excessive subscripts n and n - 1. Thus, 
the placement of a quantity serves to indicate (uniquely) 
whether it should carry nor n -1. In particular, note 
that [A'] is defined in terms of the lower operator pat
tern (r') in exactly the same way that [A] is defined in 
terms of the upper operator pattern (r), the only dif
ference being that A~ is left out of the definition of [A']. 
Note, however, the exceptions for the extended projec
tive operators ,4 , 16 where both [A'] and [m'] become of 
length n.} 

In order that the functional interpretation (2. 7) reflect 
properly the matrix element multiplication property, it 
is necessary to define the product of two unit projective 
functions by the following rule: The product 

~ rll)] ~r)J 
[M'] [M] 
(r"') (r') 

(2.8a) 

is the function whose value is given by 

[M'] [M] [m] = [M'] [m] + [A] (~rll)J [(r)J)~ ~ [(rll)] ~ ~ 
(r"') (r') [m'] (r"') [m'] + [A'] 

x [M] [m] • [r)~ ~ ~ (r') [m'] 
(2. Sb) 

It is easily seen that the general rule is: Any unit pro
jective function standing in a string of such functions 
gets evaluated on the labels [m] and [m'] shifted by the 
sum of all the upper and lower A patterns, respectively, 
of the functions standing to the right of it. One verifies 
immediately that the multiplication defined by Eq. (2. 8b) 
is associative, but, in general, non-commutative. 

In an analogous fashion, we define the Hermitian conju
gate unit projective function 

~r)~ t 
[M] 
(r') 

(2.9a) 

by giving its value 

(2.9b) 

(The matrix elements can always be, and are, chosen to 
be real.) 

In the product rule (2.8), we are allowed, by using Eq. 
(2.9), to put a dagger on either or both of the projective 
functions. Note, in particular, that 

[M] [M] [m] = [M] [m] (~r)~ t ~r)~) (~r)~) 2 

WI WI ([m'l) (r'l (:m'~ (2.10) 

Observe that, for (r) and (r') extremal, the pattern cal
culus rules apply directly to the Hermitian conjugate 
unit projective functions through Eq. (2. 9b), i.e., Pin -7 

Pin - Ai and Pin-1 -7 Pin-1 - A~ in rule 4. 

Let us next observe that the pattern calculus rules, in 
fact, utilize only the two A patterns [A] and [A'] in draw
ing the arrow patterns, to which, in turn, there is asso
ciated an algebraic factor depending on [m] and [m']. 
These rules associate a perfectly well-defined arrow 
pattern with arbitrary sets of integers [A1A2'" A ] 

d [ " '] n an A1A2'" An- 1 . However, the only such sets of in-
terest for the unit projective operators are those for 
which [A] and [A'] belong to [M]. (We say that [Ai A2'" 
A~_l] belongs to [M] if [A1A2 ... A;] does.) Clearly, 
these two A patterns define both a function 

(

[A] ) 
F [M] , 

[ A'] 

(2.11a) 

and an arrow pattern, from which we can read off 
using rules 4 and 5, the value of the function at th~ 
"point" (f;;:l]): 

F [M] ([:~\. (
[A]) 
[A'] \[ J) 

(2. 11 b) 

We define the product of two such functions in analogy 
to Eq. (2. 8b): 

[M'] F [M] ([m]\ = F [M'] ([m] + [A]\ [~[AII]) (:A])~ (:AII]) 
[A"'] [A'] \[m'l) [A"'] \lm'] + [A'l} 

x F(~~J) ([:! \ . (2.12) 
[A'] [ J} 

Again note that the associative law holds, but the commu
tative law fails, in general. 
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The calculus of the functions defined by Eqs. (2. 11) and 
the product rule (2. 12) is well defined independently of 
the relation of the two patterns to the operator patterns. 
We term such a function (2.11) a A pattern junction, 
since the junction itselj is uniquely represented geome
trically by the rules of the pattern calculus. 

Observe that we have the following identity between unit 
projective functions and A pattern functions jor both (r) 
and (r') extremal patterns: 

I~~]l = (phase) F(~:~ \ 
~r'~ [A']) 

for [A] = [A(r)] and [A'] = [A(r')]. 

(2.13) 

We also define the Hermitian conjugate A pattern func
tion 

(

[A] ) 
Ft [M] , 

[A'] 

(2. 14a) 

by giving its value 

(2.14b) 

Again we may place a dagger on either or both of the A 
pattern functions in the product (2.12). We note, in par
ti cular, that 

(
[AJ) ([AJ) Ft [M] F [M] 

[A'J [A'J 

(2. 15a) 

has the value 

(2. 15b) 

The Gel'fand pattern notation is unwieldy and ov~rly re
dundant for the elementary operators (lD) and (10). 
Accordingly, we introduce a special, more compact nota
tion for these. In this paper, three such notations occur: 

(2.16) 

where T = 1,2, ... , n in each pattern. (We omit the sub
scripts on b or i when it is clear how many times the 
numeral is repeated.) The integers T, T, and T specify, 
respectively, the operator patterns which have A patterns 
given by A(T) =0 [0' .. 010'" 0] (1 in position T), A(l") = 
[1·' '101'" l]n (0 in position ;.), and A(7') = - A(T). Thus, 
for example, 

(2. 17) 
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designates the fundamental U(n) : U(n - 1) projective 
operator (or the unit projective function) having upper 
operator pattern with A pattern A( T) and lower operator 
pattern with A pattern A(p). 

We also extend this abbreviated notation to the following 
patterns: 

(2. 18) 

where T = 1, 2, ... ,n. The integers T, T, and T now speci
fy' respectively, the operator patterns which have A 
patterns given by PA(T),PA(T), and -PA(T). Observe that, 
in each instance, the A pattern is a permutation of the 
irrep labels, i.e., the pattern is extremal. This implies, 
for example, that 

(2.19) 

Particular examples of this notation combined with Eq. 
(2.13) are 

~ T J ~ A(T) ~ [1 0] = S(p - T)F [1 0], 
p A'(p) 

(2.20a) 

~ T ~ ~ - A(T) ) [0 -1] = (-l)p-rS(p-T)F [0 -1], 

P - A'(p) 

(2.20b) 

[ 

T J ~ A(l") ~ [i 0] = ( - l)p-TS(p - T)F [i OJ, 

p A'(P) 

(2. 20c) 

~ T J ~ PA(T) ~ [p 0] = [S(p - T)jPF [p 0], 
p pt;,;(p) 

(2.20d) 

where S( p - T) is defined to be + 1 for p ~ T and - 1 for 
p < T. A'(p) is simply A(p) with the nth component 
miSSing, e.g., A'(n) = [0'" 0]. The values of the A pat
tern functions F(:) are, of course, known explicitly from 
the pattern calculus rules. 

A new development of the pattern calculus rules is ob
tained in Sec. 3. In anticipation of these results, we now 
note some additional features of the A pattern functions. 
The pattern calculus factor IN/D I is actually of the 
more explicit form 

I(Nn:n- 1 x Nn- 1:n )/(D n x Dn-1)1, 

where 

(2.21) 

N~. n-l = I product of all factors for arrows going 
. from row n to row n - 11 , 

N~_l: n = I product of all factors for arrows going 
from row n - 1 to row n I , 

D~ = I product of all factors for arrows going 
within row n I , 

D~_l = I product of all factors for arrows going 
within row n - 11 . 
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Thus, a ~ pattern calculus function is, in fact, the pro
duct of four functions, each of which has a well-defined 
meaning. We introduce now two combinations of these 
factors (the importance of these particular combinations 
will subsequently be shown). 

Let 

~
[~]J 

FR [M] 

[~'] 

(2. 22a) 

denote the restricted ~ pattern function having the value 

(2. 22b) 

obtained by deleting the denominator factor Dn from ex
pression (2.21), Le., the value obtained from the pattern 
calculus rules by leaving out all arrows within row n. 
Similarly, let 

(
[~]) 

FR ' [M] 
[~'] 

(2. 23a) 

denote the restricted ~ pattern function having the value 

(2. 23b) 

obtained by deleting the denominator factor Dn - 1 from ex
pression (2.21), L e., the value obtained from the pattern 
calculus rules by leaving out all arrows with row n - 1. 

A ~ pattern function is now expressed in terms of a res
tricted pattern function by 

J1~\)= FR~~]]\ £([~\ = FR'(~~]]\ ~([M,]\, 
~ \~~'] \[~'])/-\[ J) [~'])/- [~J) 

(2.24) 

where the value of each of the quotient functions is de
fined to be the value of the restricted ~ pattern function 
divided by d (~~l )([mJ) and d(~~}J)([m'J), respectively. 

Here d(1~l) denotes the U(n) denominator function defined 

by the arrow pattern for row n, and d(~~l )([m]) denotes its 

value Dn. Similarly, d(1~ll) denotes the U(n -1) denomi

nator function defined by the arrow pattern for row 

n - 1, and d([~}J)([m']) denotes its value D n _1 • [Observe 
that D n-l is not just the value of D n with n --7 n - 1, 
since the rules for determining the U(n - 1) denominator 
have an extra shift + 1 associated with them.] 

The multiplication rule (2.12) now implies the multipli
cation rule for the quotient functions: 

FR [M'] FR [M] d([~?'d([~' ~~"]v ~[~])V 
[~", [~'] \[ 1) \[ ]) 

(2. 25a) 

where the value of the numerator product is defined by 
the rule (2.12), and the value of the denominator product 
is defined by 

[d([~"]) ([~]~([m]) = d([~"]) ([mJ + [~J) 
\[M'] d\[Ml~ \[M'l 

x d([~])([ml). 
\[Ml 

(2. 25b) 

The second quotient function in Eq. (2. 24) obeys these 
same rules. 

The Hermitian conjugate ~ pattern functions have a simi
lar decompOSition into a restricted ~ pattern function 
part and a denominator part-simply place a dagger on 
F, F R, F R', and din Eq. (2. 24). The appropriate defini
tions are 

Similar definitions are made for the second decomposi
tion. 

Observe then that property (2.15) holds for the restric
ted ~ pattern functions. In addition, we have a similar 
property for the denominator functions 

It should re noted very carefully that in all cases of the 
various types of ~ pattern functions introduced, it is the 
Hermitian square rf which has for its value [J(x)]2. It 
is convenient to introduce the following notation for the 
productrf: 

Ifl2 =rf. (2.28) 

In particular, 

1 
d ([ ~ ]) 12 = d t ([ ~ ], d ([ ~ ] \ . 

\[M] \[MJ) \[MJ) (2.29) 

We may place a dagger on either or both of the d's in 
Eq. (2. 25b). For example, 
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[d(~~:~) d'(~~])J ([m]) 

= d ~~:~) ([m] - [" ]ld(~~]) ([m] - [" ]). (2.30) 

If f and g are 6 pattern functions, we also define (f g) t 
by the rule 

(2.31) 

An important special case of these notations and defini
tions is as follows: Let 

(2.32) 

Then 

Id~(T') d~(T) 12 = (d~(T') d~(T»)td~(T') d~(T) 
= dl(T) dl(T') d~(T') d~(T)' (2. 33a) 

and the value of the function at the point [m] is given by 

Id~(T') d~(T)12([m]) = Id~(T')12([m] + 6(T)) 

x Id~(T)12([m]) 

= {d~(T')([m] + 6(T))dMT ) ([m])}2. 

D. The factorization lemma 

(2. 33b) 

The use of boson variables as a convenient realization 
for the carrier space of U(n) is very familiar. 19 In or
der to realize all irreps of U(n), it is necessary to 
assume n kinematically independent copies of an n-state 
boson variable; that is, one takes the variables a j , 
i, j = 1, 2, ... , n, with the commutators 

[_. .,] .,,, ., 
aj,a} = 61 uJ' (2.34) 

all other commutators defined to be zero. The genera
tors E ij of the group U(n) are defined by the mapping 

n 

" - "" k-k (2 35) Eij -7 "'ij = k~ aiaj' • 

It is clear, however, that these boson variables admit 
also of a second, isomorphic U(n) group generated by 
the operator mapping 

E ij 
-7 Sij == t a!iit, (2.36) 

k;l 

and that, moreover, the two sets of operators {E ii} and 
{Elj} commute. Thus, this boson realization involves 
the direct product group U(n) x U(n). 

In fact, one sees at once that this boson realization {aj~ 
really involves the group U(n 2 ) and all totally symmetrIc 
irreps thereof. This defines a canonical imbedding of 
U(n) in the sequence of groups U(n 2 ) ::> U(n) x U(n) ::> U(n), 
in which, moreover, the irrep labels of the two U(n) 
groups in U(n) x U(n) COincide [we denote this by U(n) * 
U(n)]. This structure is precisely the analog to that exhi
bited by the tensor operators of U(n), and Ref. 11 discus
ses this canonical imbedding in detail, proving the fac
torization lemma to which we now turn. 

Let 
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(2.37) 

denote a normalized basis vector in an irrep space of 
U(n) * U(n). In this notation, the first U(n) refers to the 
U(n) group with generators E ij , the second to the U(n) 
group with generators Eij. These two U(n) groups are 
isomorphic but distinct (and commuting); the placement 
of the indices is merely a reminder as to which group is 
which ("upper" vs "lower" )-there is no other implica
tion. 

The star Signifies that the Casimir invariants of the ir
reps of these two groups COincide. Hence, both 

(M) = ([M]) 
(M) 

and (M') = (M')) 
[M] 

(2.38) 

in Eq. (2. 37) are Gel'fand patterns, the second one being 
inverted. The basis vector (2.37) may also be written in 
the form 

( M'))~ (M')) [M] = WI ([M])-1/2B [M] (A) I 0), 

(M) (M) 

(2.39) 

where 

(
M')) 

B [M] (A) 

(M) 

(2.40) 

is an operator-valued polynomial in the set of boson 
creation operators A = {a j} , the symbol I 0) denotes the 
vacuum ket, and WI ([M]) is the measure of the highest 
weight tableau associated with [M]: 

n 
n (M. + n -ill ;;1 .n 

WI([M)) == ------
. D (Min - M jn + j - i) 
.<};1 

(2.41) 

The introduction of 9Jl -1/2 into Eq. (2. 39) defines the 
manner in which the boson operators (2.40) are norma
lized: For example, if (M') and (M) are maximal, Le., 

then 

where a~:::: is the determinant formed from the k 
bosons aj, i,j ., k. 

(2.42) 

(2.43) 

The boson operator (2.40) is clearly a tensor operator 
in either its lower or upper Gel'fand pattern with res
pect to transformations in the respective U(n) subgroup 
of U(n) * U(n). As such, it must be bilinear in the cano
nical Wigner operators which are defined, respectively, 
on the two U(n) groups. The factorization lemma asserts 
that the precise form of this bilinear relation is 
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(

(M
I

)) 

B [M] (A) = Wll/2 

(M) 

(2.44) 

where Wl is an invariant operator of U(n) * U(n) which 
has eigenvalue equal to the measure Wl ([ m]) for an arbi
trary vector with labels em]. The indices e and u desig
nate the fact that the Wigner operators act, respectively, 
on the lower and upper Gel'fand patterns of an arbitrary 
vector of U(n) * U(n): 

(2.45) 

Note that when we apply the individual Wigner operators 
in Eq. (2.44) to an arbitrary basis vector (2.45), we 
should consider the common labels em] to be two identi
cal sets of labels as indicated. Note also that the two 
Wigner operators in Eq. (2.44) commute since they act 
in different spaces and that the application of a single 
Wigner operator carries a vector outside the irrep 
space of U(n) * U(n) in the general case. [More pre
cisely, these properties serve to define the meaning of 
the product of operators in Eq. (2.44).] 

The work in Sec. 3 makes use of the following important 
special case of Eq. (2.44): 

(2.46) 

(This special case accounts for the term ''boson factori
zation.") 

The boson polynomials (2.40) are of considerable in
terest ,from still another point of view: Under the map
ping a~ -0 u ij , where u ij is the element in row i and 
column j of an n x n unitary matrix U, these polynomials 
become 

(

(M
/
)) 

B [M] (U). 

(M) 

(2.47) 

These functions are precisely the matrix elements of 
the unitary matrix irrep [M] of U(n).3.20 

The structural significance of Eq. (2.44) is clear: The 
matrix elements of the boson operator (2.44) yields, in 
the boson language, a result which is completely analo
gous [in U(n)] to Wigner's 5U(2) result21 which expres
ses the integral of three representation functions in 
terms of two 5U(2) Wigner coefficients. 

3. THE TOTALLY SYMMETRIC TENSOR OPERATORS 
IN U(n) AND THEIR CONJUGATES 

A. Application of the pattern calculus 

Consider the coupling law (2.4) expressed in the inver
ted form 

x [M] + [Ll(A)] • 
[ 

(r") J 
(y") (3. 1) 

Particularizing to the totally symmetric projective 
operators of the same extremal lower patterns-say, 
those designated by p in the notation (2.17) and (2.18)
we obtain the following explicit form: 

[p _1;'1 O~ [[1 : O~ 

I ([P Irl O%p -I~'I O~ (11 T o'l ~ I~ Oil 13.21 

where (r) is uniquely determined from its Ll pattern: 
[Ll(r)] = [Ll(r')] + [Ll(T)]. [The square-bracket invariant 
in Eq. (3. 1) does not appear in Eq. (3. 2) because it has 
value 1 on the relevant extremal patterns.] We next 
iterate Eq. (3. 2), multiplying at each iteration by the 
appropriate Racah invariant to deduce 

where Tp'" T2T1 is any set of integers (1 .:( Ti .:( n) such 
that it contains Ll1 l's, Ll2 2's, "', Lln n's, where Ll1 + 
Ll2 + ... + Ll n = p, and Ll i == Llin(r). Then 

p 

6 Ll(T i ) = [Ll]. (3.4) 
i=l 

9T "'r T. is explicitly given by a string of Racah inva-
p 2 1 

riants (p in number); but we will utilize for the present 
only the fact that it is a U(n) invariant, i.e., 9

T 
T T. is a 

V" 2 1 

function whose values depend only on the irrep labels 
[m] of an arbitrary state vector. 

We next replace each projective function in the left-hand 
side of Eq. (3. 3) by the form (2. 20a), where, in addition, 
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we split each fundamental .6. pattern function into the 
first of the quotient forms (2.24). The left-hand side of 
Eq. (3. 3) becomes 

(3.5a) 

where we have written 

(3. 5b) 

We now point out the following fundamental fact: The 
restricted.6. pattern functions appearing in the numera
tor of Eq. (3. 5a) multiply by addition of their patterns; 
the underlying origin of this property is geometrical
the arrow patterns of this string of p functions contain 
no opposing arrows. Thus, the numerator of Eq. (3. 5a) 
is simply 

(ph ... ) F R ([/:1 o~ (3.6) 

independently of the particular Ti which satisfy Eq. (3.4). 
The denominator functions appearing in Eq. (3. 5a) and 
the invariant factor appearing in Eq. (3. 3) can contribute 
at most a function whose values depend on the U(n) irrep 
labels [m]; the following form must hold: 

I[P (r) o~ = (ph",,) FRirP ['1 O~/D([p ['1 o~. 
L p J \ P.6.'(p)! \[ ]) 

(3.7) 

where D([p [L'>lin) denotes a new U(n) denominator func
tion with properties yet 10 be determined. We know it to 
be a function which takes its values only on [m]. The form 
of Eq. (3. 7) is uniquely implied by the coupling law (3.2) 
and Ihe geometrical properties oj the arrow patterns. 
[Note that there is a relation implied by Eq. (3. 3) be-

tween the denominator function D Cp [6\ J) , the string of 

fundamental denominators in Eq. (3. 5a), and the invariant 
5

T 
T T ; but this relation will not be required, since we 

p'" 2 1 

plan to give a more direct derivation of the function 

DCp [6
J

OJ)' ] 

Let us remark that the value of the A pattern function 
appearing in Eq. (3. 7) is given explicitly by the pattern 
calculus rules. Only the phase and the denominator are 
undetermined. Observe, furthermore, that for (r) ---> T 

[the extremal pattern in the notation (2.18)], then 

D ( .6.(T). \ = d( .6.(T). \, 

~p °V VP °V 
(3.8) 

i.e., the value of the denominator function, in this special 
case, is obtained from the usual U(n) denominator pat-
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tern calculus rules. Our aim is to demonstrate a more 
general U(n) denominator pattern calculus rule which 

yields the value of the denominator function D((p [6l (l])' 

this rule reducing, of course, to the usual rule in the par
ticular case (3. 8). 

Starting from 

in which [.6.(r')]n = [.6.(r")]n + [.6.(p)]n and following the 
same iterative procedure which led to Eq. (3. 3), we also 
deduce the form 

(3. lOa) 

(3. lOb) 

where 5;p" 'P2 Pl is a string of P U(n - 1) Racah invariants, 

and where q == r 1.n-1 = .6.1 + .6.2 + ... + .6.~_1' The 
values of this string of Racah functions depend only on 
the U(n - 1) irrep labels [m'] of an arbitrary state vec
tor. {The binomial coefficient (inverted) comes from 
expressing the string of p square-bracket invariants in 
terms of the U(n) : U(n - 1) reduced matrix elements of 
the relevant projective operators [see Eq. (2.4)] and 
U(n - 1) Racah invariants.} USing the same argu-
ment which led to Eq. (3. 7), we obtain the following re
sult: 

l[p T b~ = (phase) F
R

' ([P P.6.(T)bl\ /D([P .6.' 0]), 
(r') J \ [.6.'] 1)/ \ [ ] 

(3.11) 

where [.6.'J = [.6.']n-lo and Dep[d/J
) is a U(n -1) deno

minator function with properties yet to be determined. 
It is a function which takes its values only on the 
U(n - 1) irrep labels [m'J. 

Once again the origin of the restricted .6. pattern func
tion in Eq. (3. 11) is the geometrical property expressed 
by the statement that there are no opposing arrou's in 
the string of p fundamental restricted .6. pattern functions 
occurring in the left-hand side of Eq.(3.10a)-lhese fac
tors accordingly multiply by addition of their .6. patterns. 
The value of this restricted pattern function is, of 
course, given by the pattern calculus rules. 

One suspects (correctly) that forms having a structure 
identical to that of Eqs. (3.7) and (3.11) should hold also 
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for the U(n) conjugates (0 - p) and the SU(n) conjugates 
(p 0). However, such results can be obtained from the 
following more general result relating the Hermitian 
conjugate to the U(n) conjugate, for totally symmetric 
Wigner operators: 

( 

(r) ~ t 

[p 01 = (- 1)</>(r)-</>(M) ~ (f) 1 
x :1)-1/2 [0 - P :I) 1/2. 

(M) (M) 
(3. 12a) 

This relation is an immediate consequence of Eq. (4. 7) 
of Ref. 4. :.0 denotes the dimension operator. Specifi
cally, 

:.0 ([m]) = iE}Pin-Pjn0121'" (n-l)!. (3. 12b) 

cp(r) and cp(M) are, respectively, the sums of all the 
entries in the operator pattern (r) and the Gel'fand 
pattern (M): 

n 

cp(r) = :0 r 1i , 
i=1 

(3. 12c) 

n 

cp(M) == :0 M Ii' 
i=l 

(3. 12d) 

(f) denotes the unique operator pattern determined by 

(3. 12e) 

and (M) has a similar definition, i.e., (M) denotes the 
Gel'fand pattern having the negative weight of the pat
tern (M). [A more general definition of (r) and (M) will 
be found in Ref. 3. J 
USing the U(n) : U(n - 1) subgroup reduction law, Eq. 
(3. 12a) is easily transcribed into the following relation 
between projective operators: 

[ 

(r) J 
[0 - pJ 

(y) 

= (-I)</>(r)-</>(y) 

x (~) 1/2 ~P (r) o~ t (~) -1/2, (3.13) 
:l)n-1 :l)n-1 

(y) 

where the subscripts nand n - Ion :.0 refer, respectively, 
to the dimenSion operators in U(n) and U(n - 1). Noting 
that 

~ (i") J ~(I)~P ~ (r) ~ [p OJ [iJ [0 -pJ, 
(y) (1) (y) 

(3.14) 

we also obtain the relation between the [p 0] p,rojEl,ctive 
operators and the totally symmetric ones, [p 01. (r) de
notes the ~ttern determined (uniquely) by [~(r)]n = 
[P]n + [~(r)]n' 
We now turn to the following section for the determina
tion of the denominator functions appearing in Eqs. (3. 7) 
and (3.11). 

B. Application of the factorization lemma 

There are several ways of determining the denominator 
functions appearing in Eqs. (3.7) and (3.11). The factori
zation lemma provides an extremely useful technique 
for illuminating the simple structures underlying other
wise very complicated expressions. In view of the fact 
that one of the principal aims of the present paper is to 
explain, by actual examples, structural approaches to 
group theoretic problems, we shall accordingly empha
size, more than is customary, the purely technical and 
manipulative aspects of our work. The present section, 
developing properties of the denominator functions, pro
vides an instructive example. 

It is first of all clear that the denominator function in 
Eq. (3.7) cannot depend on p. ConSider then the follow
ing totally symmetric boson polynomial in the irrep 
space of U(n) * U(n): 

(3.15) 

where the 1 deSignates the maximal pattern in the nota
tion (2.18). We now apply the factorization lemma (2.44) 
directly to this operator and obtain 

(3. 16) 
But also, from Eq. (2.46), we have 

(3.17) 

and, therefore, 

(??,~1 T o~ V b~ Y 
\l 1 lie \ 1 ~ 

(3.18) 
Relation (3. 18) is an operator identity on the space of 
state vectors of U(n) * U(n), and we are at liberty to let 
Eq. (3. 18) act on any selected U(n) * U(n) state. We 
choose states which are maximal in the U(n - 2) * 
U(n - 2) subgroup labels and which carry the same 
U(n - 1) labels [m'J: 

( ~~»)~. 
[ml] 

(max) 

(3.19) 

This class of state vectors is precisely the space in 
which the projective operators act [see Eq. (2. 25) of 
Ref. 4 J. Furthermore, the relevant U(n - 1) Wigner oper
ators in the subgroup reduction of Eq. (3. 18) act like the 
identity on the subspace of states of the form (3.19). 
(Their matrix elements have numerical value 1.) Thus, 
Eq. (3. 18) implies the following relation between unit 

J. Math. Phys., Vol. 13, No. 12, December 1972 



                                                                                                                                    

1968 B lED E N H A R N, LOU C K, C HAC 6 NAN D C 1FT AN 

projective operators: such that 

Le., this is an operator identity on the U(n) * U(n) states 
of the type (3.19). [Indeed, we could even choose the 
upper U(n - 1) labels and lower U(n - 1) labels to be 
distinct. ] 

We now take matrix elements of Eq. (3. 20) between the 
initial state (3.19) and a final state of the same form but 
with U(n) * U(n) irr;ep labels [m] + [A]-where [A] is any 
[A] belonging to [p O]-and with U(n - 1) * U(n - 1) irrep 
labels [m'] + pA'(I). This selects a single term from the 
left-hand side and gives the square of a reduced matrix 
element-the term appearing in the left-hand side of Eq. 
(3. 22a) below. 

Next consider this same matrix element for the right
hand side. We introduce p summation patterns 7 p ••• 7271 
and write the pth power in Eq. (3. 20) as a string of p 
operators (the same operator written p times), denoted 
symbolically as follows: 

(~[H])' ~[l[].)(~[l[J) 
~ ,p~",([U])''' ([]JD ([]J]) (3.21) 

The application of the first pair [] l [ ] u (the pair on the 

far right) to the state (3.19) gives a new state of the type 
(3.19) with [m] ---) [m] + A(71), [m'] ~ [m'] + A'(I), multi
plied by the square of a fundamental reduced matrix ele
ment, ••• , the application of the last pair [] t [] u to the 

state generated by all the pairs to the right gives a final 

state of the type (3.19) with [m] ---)[m] + "6i=l A(T j ), 

[m'] ---) [m'] + PA' (1), multiplied by the square of a funda
mental reduced matrix element. The result may be ex
pressed as follows: 

/[m] + [A] 
\[m l

] + pA' (1) 

/[m]+[A] 

~ml] + pA /(1) 

[m] \ 2 

[m
l

]/ 

(3.22) 

where the summation is over all 7 p '" 7271 (1 ". 7 j ". n) 
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(3.23) 

Observe that-although we have used a speCific realiza
tion (the boson basis) in obtaining Eq. (3. 22)-this result 
is an abstract general relation. Indeed, it is precisely 
the abstract operator statement: 

We could have derived this result, Eq. (3. 24), by purely 
abstract (algebraic) techniques; but this would have re
quired detailed use of the properties of the Racah in
variants. The power of the factorization lemma for 
directly obtaining abstract and general results is clear. 
[A similar technique has previously been used4 to deter
mine the abstract structure of the generators of U(n) in 
terms of the fundamental Wigner operators and their 
conjugates. ] 

Equation (3.20), hence, Eq. (3. 24), is also correct for an 
arbitrary lower extremal pattern p, and again the proof 
can be given from the factorization lemma, starting 
with (a~)P, but now paying more attention to the U(n - 1) 
Wigner operators which occur. Note, however, that for 
p == n the result is immediate. 

Next, let us interpret Eq. (3. 24) in terms of the projec
tive functions and the restricted A pattern functions in
troduced in Sec. 2C. The result is 

that is, 

)F
R 
~p [A] 00 ([m])t 

I \ A'(1) I) [m'l \ 

1 
(3.25) 

~p (r) oJ = (phase) FR([p [A] O)/D( [A] 0)' 
L 1 J ,I A'(1) '1 \[P ] 

(3. 26a) 

where 
1 

~= 
1- ~ 0])1 (3.26b) 

where the summation is over all 7 p'" 7271 (1". T i '" n) 
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satisfying Eq. (3. 23). The complete result, including the 
determination of the new denominator function, is thus 
proved directly from the factorization lemma and the 
geometrical properties of the arrow patterns. 

Let us remark that Eq. (3. 26b) completely determines the 

denominator function I D ([p [':>J OJ) 1
2

, since the right-hand 
denominator functions are fundamental, and their values 
are already given by the pattern calculus rules. 

We can given an elegant interpretation to Eq. (3. 26b) by 
considering the irrep labels [m] = [m1nm2n" 'mnn ] as 
specifying a lattice point in n-dimensional Euclidean 
space Rn. We then consider ~(T) = [0'" 010'" 0] (1 in 
position T) as an elementary shift acting along axis T. 
Since T may be 1,2, "', or n, we can make elementary 
shifts along any of the n perpendicular directions. The 
label [m] defines a lattice point in Rn as does [m] + [~]. 
A selected set Tp ' "', T2' T1 (such thatL;i6(T i ) == [~]) of 
integers then defines a path beginning at [m] and ending 
at [m] + [~1. Our result, Eq. (3. 26b), then takes the very 
suggestive form 

Y D ([p [" J OJ) I \[m j) ~ ill ,.{;i"N' (cont::uon) 
[mJ to [m] + [':>] (3. 27a) 

where a "path contribution" is defined to be 

with the value of the denominator functions d.:>( ) being 
given by using Eq. (2. 33b). r 

The expressions (3.27) are clearly suggestive of Feyn
man's approach to quantum mechaniCS and indicates that 
the pattern calculus has ultimately some kind of inter
pretation as a lattice quantum mechanics. The evident 
vagueness of this remark is balanced by its equally evi
dent interest. 

We defer further discussion of Eq. (3. 26b) to the next 
subsection, and consider now the second denominator 
function of Eq. (3.11). It is related to the first denomi
nator function of Eq. (3. 26) for n ~ n - 1. To establish 
this relation, we first observe that Eq. (3. 24) implies 
the following property of the U(n) invariant operator of 
Eq. (3. 3): 

(3.28) 

where the sum is over all T i satisfying Eq. (3.4). Next, 
consider the U(n - 1) invariant operator in Eq. (3. lOa). 
We claim that the property (3.28) implies also 

(3.29) 

where the sum is over all P p' •• P2P1 (1 ~ P i ~ n) such 
that Eq. (3. lOb) holds. We argue as follows: Eq. (3. 28) 
is a statement about a string of p U(n) Racah invariants
Eq. (3. 29) is precisely this same property applied to a 
string of q U(n - 1) Racah invariants. At first glance 
this conclusion appears to be incorrect because the po 
in the summation (3.29) can assume the value n. How'
ever, closer examination will show that for each po 
which assumes the value n, the corresponding U(n '- 1) 

operator pattern in the U(n - 1) Racah invariant be
comes 

and the Racah invariant (for the patterns which actually 
occur) becomes the identity operator 1. Since each 
sequence P •. 'P2P1 contains ~11's, ~2 2's, ... , ~~ n's, 
it follows that each string of p U(n - 1) Racah invariants 
in d~p 0 .. PZP

1 
reduces, in fact, to a string of ~1 + ~2 + .. , 

+ ~~-1 = q U(n - 1) Racah invariants. The summation 
in Eq. (3.29) assumes the form 

(3.30) 

where the summation is now over all integers P q' •• P2Pl 
(1 ~ Pi ~ n -1) such that 

q 

'" ~'( P 0) = [~'] = [~' ~' ... ~' ] L..J , n-1 1 2 n-l • 
i~l 

Furthermore, the form (3.30) becomes precisely the 
form of the left-hand side of Eq. (3.28) for p ~ q and 
n ~ n - 1. Since property (3. 28) is true for all n = 2,3, 
••. and allp = 1,2,"', the proof of Eq.(3. 29) follows. 

Using property (3.29), we obtain the following result 
from Eq. (3. lOa): 

in which the sum is over all Pp' •• P2Pl (1 ~ P 0 ~ n) such 
that ' 

p 

L;~(Pi) = [~']n' 
i4 

(3. 31b) 

Equation (3. 31a) now implies 

frp T b~ = (phase) FR' ~p P~(T) O~ /D([P , OJ\, 
L (r') J \ [~'] i/" \ [AJ ) 

(3. 32a) 

in which now [~'J = [~'Jn-1' The new denominator func
tion is defined by 

1 

(3. 32b) 

where 
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(3. 32c) 

tI.'(Pi) = [0- _. 010-·· 0]n-1' 

tI.'(n) = [0· . ·O]n_11 

1 in position Pi' (3. 32d) 

(3. 32e) 

and where the summation is still over all Pp '" P2P1 
(1 "'" Pi "'" n), such that L;f~l tI.{ Pi) = [tI.'Jn' However, 
noting from Eq. (2.24) {for (M] = (1 0]) that d'r:" (n) = 1, 
we see that Eq. (3. 32b) reduces to 

1 

(3. 33a) 

in which now the summation is over all Pq " 'P2P1 
(1 ~ Pi "'" n - 1) such that 

(3. 33b) 

Recall also that 

(3. 33c) 

This new denominator function also has a sum-over
paths interpretation, where now each path carries equal 
weight given by the binomial coefficient (!). 

Despite the similarity of the sums in Eqs. (3. 26b) and 
(3. 33a), they do not represent examples of the same 
general sum, the reason being that the pattern calculus 
rules for forming fundamental U(n) denominators differ 
from those for forming fundamental U(n -1) denomi
nators. It thus appears that we are confronted with the 
task of performing two difficult summations, and not just 
one. This, however, is not the case: It will now be de
monstrated how the second sum (3. 33a) can be converted 
into one of the form identical to that of Eq. (3. 26b). 

Consider the denominator arrow pattern for the funda
mental tI. pattern tI.(T) •. This defines the function db.(r)' 

Its value is given by applying the pattern calculus rules 
for row n: 

db.(r)([m]) = (liQ(Prn-Pin)I)1/2. 

''''7 

(3. 34a) 

Suppose, however, we apply the rule appropriate to a 
U(n - 1) denominator, Le., we evaluate the same function 
db.(T) on the min' but now use the extra + 1 in each fac
tor appropriate to the rules for a U(n - 1) denominator. 
This defines a new function evaluated at [m]: 

The relation between these functions is simply 

d' - "" 1/2 d ""-1/2 b.(T) - ,u n b.(r),un , 

(3. 34b) 

(3. 35a) 

where :Dn is the U(n) dimension function. The meaning to 
be associated with this multiplication of an ordinary 
scalar function with a A pattern function is4 
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d~(T}([m]) = :D;/2([m] + A(T»dA(T) ([mJ):D;.1/2([m]). 
(3. 35b) 

[Equation (3. 35a) may be viewed as a statement as to 
how to convert, operationally, the U(n) denominator rule 
into the U(n - 1) denominator rUle.] 

Replacing n by n -1 in Eq. (3. 35a), we obtain 

d ' -""1!2d ""-1/2 A'(P) - ,un-1 b.'(p),un-l ' (3.36) 

where A'(p) = [A(P)]n_1,d':"(p)([m']) is the value of the 
U(n - 1) denominator function obtained by the usual (+ 1) 
pattern calculus ruies,anddb.'(p)([m']) is the value 
assigned to a U(n - 1) denominator function by using the 
factors (no + 1 is added) appropriate to the pattern cal
culus rules for U(n) denominators. 

We now use relation (3.36) in the right-hand side of Eq. 
(3.33a) to obtain 

\d ' "'d' \2 -\""1!2d "'d "'-1/2\2 A'(Pq) LI'(Pl) - ,un-l A'(Pq) A'(Pl),un 

(dLl,(P
q
)'" dA'(Pl»t:Dn-l(dA'(P';'" dLl'(p):D;\. (3.37) 

Thus, we can write 

where 

The last denominator is now of preCisely the same form 
as the one of Eq. (3. 26b). 

With this Simplification in hand, we now turn, in the 
following section, to the problem of evaluating explicitly 
the complicated appearing sum of Eq. (3. 26b). 

C. The generalized denominator function pattern calculus 

The defining equation for the denominator function under 
discussion, Eq. (3. 26b), is useful conceptually but needs 
to be implemented in practice. We have succeeded in 
obtaining a remarkably concise and explicit form for 
these functions which represents a further development 
in the pattern calculus. This result is a generalization 
of the answer for U(2) given earlier5 (without proof). 

Since the U(2) result is much more easily understood, 
we shall discuss it in detail. Consider at first the 
special U(2) denominator function 

111 -----,:-- + ---"-----;-. (3.39) 
InG~) \ 2 Id[l OJd[o IJI2 Idro 1Jd[1 0)\2 

The value of Id[l Old[o 1)12 is {(dEl OJdro 1J)(m 12m 22 )}2 
:::: {d[l OJ(m 12,m 22 + 1)}2 X {d(O Ij(m 12m 22 )}2 :::: 

(P 12 - P22 - 1)(P12 - P 22 ). Similarly, the value of the 
second denominator is (P 12 - P22 + 1)(P12 - P22)' 
Thus, 

P22 -l)(p12 - P22 + 1). 
(3.40) 
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We now seek to understand the structure of the result 
(3.40). First, we decompose the 6 pattern [1 1] into the 
form [11] = [1 0] + [0 1]. We next draw the arrow
patterns for [1 0] and [0 1]: 

.~. • • 
""'----"'" 

Over each of these arrow patterns, we write the shift 
of the other arrow pattern: 

o 1 
.~. 

1 0 

Next, we associate with each of these arrow patterns an 
algebraic factor 

(3.41) 

where 61 designates the numeral sitting over the tail of 
the arrow and 62 designates the numeral sitting over the 
head of the arrow. This yields the two algebraic factors 
P12 -P22 -1 andP 22 -P 12 -1, the absolute value of 
which is just the denominator (3.40), except for the fac
tor 2, which is associated with the number of paths. 

Encouraged by this simple structural interpretation of 
D(~ 6)' we try to generalize to D(~l ~2), having the 6 
pattern [61 6 2], where 6 1 + 6 2 = p: Following the same 
procedure, we are led to the patterns 

Using rule (3.41) for the first arrow in each pattern, 
adding 1 for the second arrow, etc., we write out the two 
algebraic factors associated with the two patterns above: 
(P 22 - P 12 - 6 1)(P22 - P 12 - 6 1 + 1)'" 
(P 22 - P 12 - 6 1 + 6 2 - 1) and (P 12 - P 22 - 6 2) X 
(P 12 - P 22 - 6 2 + 1)'" (P 12 - P 22 - 6 2 + 6 1 - 1). 
Since the number of distinct paths in the sum (3. 26b) 
(for n = 2) is P! /(61)! (62)!, we are led to conjecture 
the following general form: 

in which 6 2 =P - A1 • 

(
P 12 - P 22 + 6 1) , 

6 1 + 6 2 + 1 

(3.42) 

Observe that Eq. (3.42) is correct for the two extremal 
patterns 6 1 = ° or 6 1 = p, in which case it reduces 
(properly) to the ordinary pattern calculus factor for 
the U(2) denominator. 

It is easy to prove by induction that the conjecture, Eq. 
(3.42), is indeed correct. It is, however, essentially as 
easy to prove the general result for U(n), and this we 
now do. 

Let us first give the generalization of the pattern cal
culus rules for the U(n) denominator function D([p[L:.\i]) 

which has the 6 pattern [616 2 ... 6 n ], where.0i 6 j = p. 
We decompose [6] in the form 

[616 2 '" 6 n ] = [610'" 0] + [°62°'" OJ 

+". +[0'" 06n J. (3.43) 

Next, the arrow pattern is drawn for the 6 pattern 
[0," 06 T O'" 0]: 

6 n 
(3.44) 

In this arrow pattern, there are 6
T 

arrows going from 
dot T to each of the remaining dots. Above each dot 
appears the shift associated with the sum of all the re
maining 6 patterns in the decomposition (3.43). We now 
associate an algebraic factor with each arrow according 
to the pattern calculus rules (applied to row n), shifting, 
however, eachp(head) by the 6 j which sits above dot i. 
Thus, the algebraic factor associated with the arrow 
pattern (3.44) is 

I jt)1 (p Tn - Pin - 6 i)(p Tn - Pin - 6 j + 1) 
i~T 

... (P Tn -Pin -6; + 6 T -1)1. (3.45) 

We draw the n arrow patterns (3.44) corresponding to 
T = 1,2, ... ,n and take the product of all the algebraic 
factors. Finally, we put in the number of paths factor 
p! /61 ! 6 2 ! ... 6 n ! to obtain the following conjectured 
form: 

x ... (P Tn - Pin + 6 T - 6 i-I) I 
6 1 ! 6 2 ! ... 6

n
! 

p!:D'([m] + [6]l 

n (Pin - P'n + 6 i \ 

X iH~l (6 j + 6 j + I)! 6
j 

+ ~j + 1';' 
(3. 46a) 

where :D' is the dimension operator :D multiplied by the 
numerical factors I! 2! ... (n - I)! : 

n 
:D'([m]) = :D([mJ) x (1!2! ... (n -I)!) = . n (P'n -P, ). 

'<J~1' In 

(3. 46b) 
[Note that in making the last step in Eq. (3. 46a) we 
have been careful to arrange the factors so that each 
term in the binomial coefficient is nonnegative.J 

The proof of Eq. (3. 46a) will be given by induction on p. 
Note that the result is correct for P = 1, since each 
allowed operator pattern (r) is extremal, and the result 
reduces correctly to the usual pattern calculus factor 
for the denominator function associated with row n. 
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In order to give the induction proof of Eq. (3.46), we 
first obtain a recursion relation. This is easily done 
directly from the sum-over-paths formulation (3. 26b): 

where 

[6'] = [6']n = [6] - 6(T). (3. 47b) 

This relation is just the geometrical statement that 
there are n points [m] - 6(T), T = 1, 2,3, ... ,n, which 
are one unit displaced from the final point of the path 
from [m] to [m] + [6]. 

The proof of Eq. (3.46) now follows upon demonstrating 
that it satisfies Eq. (3. 47a). But we easily determine 
that 

I

· D( [A].)([m]) /2 
I 2 [P 0] 

\..",([ml + [A'II l ( [A 'I ) 
D . ([m]) 

[p - 1 0] , 
n 

1 Fl1 (Pin - P;n - 6;) 

P n 
i~l (PIn - p~n) 

(3. 48a) 

i~T 

where Pin = Pin + 6; (i = 1,2, ... ,n). Thus, we must 
demonstrate that 

n 

E (3. 48b) 
r;l 

But this result is an easy consequence of the general 
summation formula (AI) of Ref. 4. The general validity 
of Eq. (3. 46) has thus been established. 

This result shows that there exists a significant exten
sion of the pattern calculus rules in which patterns act 
on patterns in new and different ways. (These examples 
above are very likely only a first step in this program.) 
We find it quite striking that these simple geometrical 
rules [Of the generalized U(n) denominator pattern cal
culus] can effect completely the summation of the very 
complicated sum-over-paths relation, Eq. (3. 26b). 

D. Summary of results 

Let us now summarize the results so far obtained by 
giving the complete answers, including the phases. 

The determination of the phase in Eq. (3. 7) proceeds as 
follows. Since the denominator function is positive (we 
always take the positive solution to x 2 = a from the 
pattern calculus results), the phase is uniquely deter
mined by the fundamental projective operators appear
ing in the left-hand side of Eq. (3.3). Since Tp··· T2T1 

contains I 6 1 times, ... ,n 6" times, it follows from Eq. 
(2.20a) that the phase of Eq. \3. 7) is 
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[S(p -1)t1[S(p - 2)t2 ••• [S(p -n)tn 

_,(_I)t>P+l +t>P+2 .. •• +t>n for p < n 

-tl for p = n 

Our first complete result is 

(3.49) 

= (-I)OPFR ~p [6] o~ In( [6] 0]), 
\ P6' (p) / / L [P 

(3.50a) 
where 

n 

(a) Op = E 6;, On = 0, 
i;p+1 

(3.50b) 

(b) the value of the restricted A pattern function FR is 
obtained directly from the usual pattern calculus rules, 
and 

(c) the value of the denominator function is given by the 
positive root of Eq. (3. 46a), i.e., is now read off directly 
from the generalized U(n) denominator pattern calculus 
rules [henceforth called simply the U(n) denominator 
pattern calculus rules, since they always reduce to the 
usual rules for extremal patterns]. 

We also remark that for (r) --7 T the phase of Eq. (3.50) 
becomes + I and agrees with our general "phase rule" 
given in Ref. 4. 

Our second complete result is 

~ T o~ 
L (r') J 

in which [6'] = [6']n-1 and 

r-1 

o~ = E 6;, 01 = O. 
i;l 

(3.5Ib) 

The value of the denominator function on the U(n - 1) 
labels [m'] = [m 1n-1 ... m n-1n-1] is obtained from Eq. 
(3. 38a): 

I (P)1/2 

D ([P 0]) ([m']) - q 
[6'] 

r 5)n-1 ([m ']) ] 1/2 

LX,n-1([m'] + [6']) 

I x , (3.5Ic) 

D ( [6']. )([m']) 
[q 0] 

where 
n-1 

(a) q = r 1n-1 = 6 6;, 
, ;;1 

(3. 51d) 

and (b) the value of the denominator function is given by 
the U(n) denominator rules applied to n -1: 

D( [6']. )([m']) 
[q 0] 

= f(6])!(A2)! ... (6~-1)! 
lq!5)~-l([m'] + [6']) 
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(P 
-P + t::.')~ 1/2 in-1 jn-1 , 

(t::.'. + t::.~ + I)! 
'J t::.~+t::.j+l (3.51e) 

(This is obtained from Eq. (3. 46a) by the appropriate 
substitutions. ) 

In addition to these results, we also have four similar 
expressions, which are implied by relations (3.13) and 
(3.14). We note only the following one: 

where 
n 

(a) lip = lip +:0 (p - i)t::. p 
,~1 

and 

(b) D(-:- [t::.] )([m]) 
[0 - p] 

(3. 52a) 

(3. 52b) 

We remark that this denominator is given directly by 
the (generalized) U(n) denominator rules where the rele
vant decomposition of - [t::.] is - [t::.] = [- t::. 10··· 0] + 
[0 - t::. 20··· 0] + ... + [0'" 0 - t::.n]. The typical arrow 
pattern (in the sequence of n arrow patterns) is obtained 
by reversing the direction of the arrows in the arrow 
pattern (3.44) and placing a minus sign in front of each 
t::. i • 

Finally, we remark that the reduced matrix element 
obtained from Eq. (3. 50a) for p = n (all zeroes in the 
lower pattern) is also the matrix element 

\

[m]n + [t::.]n \ (r).1 
[P 0] 

(rn)n-1 
n 

(3. 53) 

of the Wigner operator of the same labels since the 
U(n - 1) matrix element has the numerical value unity. 
One may then use the U(n) generators to obtain14.15 

from this result the matrix elements of the general 
symmetric tensor operator. Equation (3 .12a) then gives 
immediate~y the matrix elements of the U(n) conjugate 
operator (0 - p), and by an appropriate shifting of labels 
also of the SU(n) conjugate operator <p 0). 

E. A class of U(n) Racah coefficients and their limits 

A certain class of Racah coefficients of U(n) can be 
written down immediately from the results of the pre
ceding subsection. The following coupling law is a 
special case of the general coupling law, Eq. (3.1): 

(3.54) 

Since 

[t::."] ) ( [t::.']) ([t::.]) FR( [P + q 0] = FR [q 0] FR [P 0] , 
(p + q) t::. (1) qt::. (1) pt::. (1) 

(3.55) 

it follows from Eqs. (3. 50) that 

f([p + q 0]) Irq 1 o~ ([P O]){ ([m] + [t::."J) 
( (r") \ (r) / (r) j 

= D( [t::."].) ([m]) 
[P + q 0] (3. 56 a) 

D( [t::.'].) ([m] + [t::.]) D( [t::.].) ([m]), 
\[q 0] [p 0] 

where [t::."] = [t::.(r")], etc., hence, 

[t::."] = [t::.'J + [t::.]. (3. 56b) 

We may, of course, write out similar results for the 
Racah coefficient having irrep labels all of the type 
(6 - k] or all of the type [kO]. More Significant is the 
fact that the Racah coefficients of these types can be 
written out completely from the U(n) denominator pattern 
calculus rules. [This was first pointed out for U(2) in 
Ref. 5.] 

It was proved in Ref. 4 that each unique Racah coeffi
cient must become a square-bracket coefficient in the 
limit mnn = Pnn -? - co. It is, nonetheless, satisfying to 
show directly that the Racah coefficient (3.56) exhibits 
this property. Isolating the terms containing Pnn in Eq. 
(3.56), one easily verifies that these terms have the 
limit 1: Thus, 

[ P!q! x (r + s)! x (p + q -r - S)!]
1/2

i((r + s OJ) ~s 1 O~ ((r OJ)} ([m]n-1 + (t::."]n-l)' 
(p+q)! r!s! (p-r)!(q-s)! 

(r")n-2 (r')n-2 (r)n-2 (3.57) 
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wherer = r 1.n-1 = ~1 + ~2 + ... + ~n-l ands = rLn-l = ~i + ~2 + ... ~~-l' 
One easily verifies that 

[p ~]n ) = [P!q! x (r + s)! x (p + q -r - s)!J1/2. 
[rO]n_l (p+q)! r!s! (p-r)!(q-s)! 

(3.58) 

Using this result, the right-hand side of Eq. (3. 57) is seen to be precisely the square-bracket coefficient 

Thus, the limit relation is verified directly for this 
special case. 

We may continue to take the limits mn - 1 n ~ - co, 
mn - 2•n ~ - co, ... ,m 2n ~ - co, in turn, of Eq. (3. 57). The 
final limit yields precisely the Wigner coefficient 

~p + q 0] 
'\ (r") 

Irq 1 o~ 
\~ (r') / 

[P 00. 
(r) / 

(3.60) 

Aside from their intrinsic interest, such limits imply 
important structural properties of operator patterns. 4 

Indeed, one can now proceed to demonstrate (by the pro
cedures of Ref. 4) that the limit properties of the totally 
symmetric projective operators induce uniquely the 
complete upper operator pattern labels from the lower 
operator pattern labels. [This property has already been 
proved for all operator patterns which are uniquely 
determined by their ~ patterns. 4] Thus, starting from 
U(2), the operator patterns are induced, by limits, from 
the Gel 'fand patterns. The upper operator patterns of 
the symmetric projective operators in U(3) are then 
induced, by limits, from the lower operator patterns, 
which are U(2) operator patterns, etc. All operator pat
terns of the totally symmetric unit projective operators 
may be considered to originate from the limit properties 
of lhe associated reduced matrix elements. (A similar 
statement applies, of course, to the [6 ~ p] and rP 0] 
operators.) 

This brief discussion is intended only to indicate how 
one can verify the implications of limit properties for 
the unique operators. Of considerably more interest is 
the explicit verification that it is this same limiting 
property which labels the unit projective operators in a 
multiplicity set. To achieve this goal, it is first neces
sary to demonstrate the property fully for all U(3) pro
jective operators. Since we know the canonical splitting 
of a multiplicity set in U(3), this first step is within our 
reach. We accordingly now direct our attention to U(3) 
solely. 

4. THE CANONICAL SPLITTING OF THE 
MULTIPLICITY IN U(3) 

A. The origin of the splitting 
Once we have obtained the Wigner operators (p - q 00) 
and (q,qO) , we can obtain more general operators by using 
the Wigner coupling 
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(3.59) 

(4.1a) 

This Gel'fand pattern coupling is known, since the coup
ling coefficient is 

~ q 0] ~ _ q (max) 0 0\ 

\ (M") '\ (M') / 

[q q O~, (4.1b) 

(M) I 
and this matrix element is determined from knowledge 
of the operator (p - q 0 0) itself. 

The problem is, of course, that this coupling defines not 
a single Wigner operator, but rather a linear combina
tion (with invariant Racah functions as coefficients) of 
the Wigner operators 

~ (r) ~ 
p q 0 , 

(M") 

(4.2) 

where the sum is over all (r). 

The key point in the canonical splittingll is to recog
nize that if the coupled operator (p - q 0 O)(w) (q q 0) is 
restricted to a maximal shift in U(2), then the Wigner 
operators belonging to a multiplicity set collapse to but 
a single term. More precisely this is the statement 

= (invariant coefficient) 

~ (r s) y ([m])~ 
[P q 0] [m '] , 

(M") m 11 

(4.3) 

where [m] = [m13m23m33]' [m'] = [m 12m 22 ],and [~] = 
[~1~2~3] is any preselected [~] belonging to [p q 0]. Of 
course, relation (4.3) always holds whenever [~] uniquely 
determines the operator pattern denoted by (r s)' The 
essential contribution of Ref. 11 was the demonstration 



                                                                                                                                    

CANONICAL TENSOR OPERATORS I. 1975 

that Eq. (4. 3) still holds even when [6.] determines a 
multiplicity set of operator patterns. (r s) then desig
nates preCisely one of the operator patterns in the mul
tiplicity set determined by [6.]. (Just which one remains 
to be determined.22 ) Since the U(2) pattern [P 0] is the 
unique 6. pattern such that [6.16.2] has 6.1 - 6.2 equal to 
the largest possible value for the (p - q 0 O)(w) (q q 0) 
coupling, we designate the pattern by (r s)' where s de
notes "stretched." While we can guess from previous 
experience with the adjoint operators and the 27-plet of 
operators that, depending on the specific shift values 
[6. 16. 26. 3]' the operator pattern (r s) has either the form 

C r" 

q 

o 0) 
r ll 

(4.4a) 

or the form 

Cp 
q 

r" ) 
r ll 

(4.4b) 

this guess remains to be proved. Until this guess is 
shown to be correct, (r sl denotes a single, but unspeci
fied, operator pattern belonging to fhe multiplicity set 
determined by [6.]. 

The property expressed by Eq. (4. 3) is entirely equiva
lent to the following property of the U(3): U(2) projective 
operators 

[ 

(r) J 
p p q 0 0 

p 

(4.5) = 0, 

for all (r) belonging to the multiplicity set determined 
by [6.], except for a single upper operator pattern-the 
one denoted by (r s)' Property (4.5) is a very strong 
statement: It asserts that all but one U(3): U(2) projec
tive operator (in any multiplicity set) having maximally 
stretched lower pattern is the zero operator. 

This splitting is a fundamental property of the U(3) 
operator system, yet it is hardly obvious a priori. How 
does this remarkable property come about? To see this, 
let us consider representing the projective operator 

r 
(r) J 

p p q 0 0 

p 

(4.6) 

in terms of the elementary projections [100] and [110]. 
One easily determines that each such operator (4.6) 
must have the structure as follows: 

= (U(3) invariant factor} 

(4.7a) 

where 7 ... 7 7 (1 <: 7· <: 3) and i '" 7 7 p-q 2 1 -, - q 2 1 

(1 :::: 7i :::: 3) are any assignment of integers such that 

p-q q 

6 6.(7) + 6 6.(7i ) = [6.]. (4.7b) 
i e 1 i~1 

It is important to observe that, although we have indi
cated a specific ordering in Eq. (4. 7a), our intent is that 
this string of p elementary projective operators can be 
put together in any arbitrary fashion, it being necessary 
only to preserve property (4. 7b). 

Next, let us decompose each elementary projection in the 
right-hand side of Eq. (4. 7a) into the quotient form (2.24). 
We then observe that in the string of p elementary res
tricted 6. pattern functions there are no opposing arrows 
in lhe slring of p corresponding elementary arrow pat
terns. This means that these elementary restricted 6. 
pattern functions, in any ordering whatsoever, multiply 
by addition of thelr corresponding 6. patterns. Thus, in 
any rearrangement of the elementary operators, the 
right-hand side of Eq. (4. 7a) yields the factor 

(4.8) 

The denominator factor together with the normalization 
factor can contribute only a function whose values depend 
on [m13m23m33]' Le., an over-all normalization, which 
depends on the speCific ordering. This implies that there 
exists but one operator (4.6) in the multiplicity set de
term ined by [6. ]-this unique operator being the one we 
have designated by the operator pattern (r s) (all others 
being therefore zero). Furthermore, this operator has 
the structure as follows: 

[ 

(r
s

) J 
p p q 0 0 

p 

where 

(4.9b) 
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denotes a new denominator function, whose values depend 
only on the irrep labels [mj, which has further proper
ties yet to be determined. The value of the restricted t:. 
pattern function in the numerator is, of course, given 
completely by the pattern calculus rules. 

Let us emphasize again that the results (4.9) and (4.5) 
are uniquely implied by the geometrical properties of 
the arrow patterns (the same property of no opposing 
arrows used in the previous sections). There are no 
free choices in this structure. [We establish in II that 
even the operator pattern itself, (r s), is uniquely assign
ed by limits. j 

B. Application of the factorization lemma 

We wish now to apply this splitting to determine expli
citly the projective operators 

(4.10) 

The most instructive procedure makes use once again of 
the factorization lemma. 

Consider then the following boson operator 

B f :: : 0) (A) = (ajlP-' (aW' (4.11) 

Following exactly the procedures, whereby Eq. (3. 20) 
was deduced from the boson operator of Eq. (3.15), we 
obtain 

(4.12) 

We can proceed with this expression in two distinct and 
instructive ways. In the first method, we recognize that 
the operator which is raised to the (P - q )th power is 
just 

J. Math. Phys., Vol. 13, No. 12, December 1972 

[ 

(P) J l (P) J (p) p - q 0 0 p - q 0 0 

p-q 0 p-q 0 

p-q t p-q u 

(4. 13a) 

and the operator which is raised to the qth power is just 

[ 

(r") l 
;p., q q : 0 0 , (4. 13b} 

This corresponds to recognizing in the original boson 
operator (4.11) that the first factor is 

( 

p -q ) 

B P ~ ~ q 0 0 0 (A), 

P -q 0 

p -q 

and the second factor is 

(4. 14a) 

(4.14b) 

We next use Eqs. (4.13) in the right-hand side of Eq. 
(4.12) and take the matrix elements of the expression 
between the following U(n) * U(n} states, 

(

max) ) 
[m'] + [PO] 

[m] + [t:.] 

[m'l + [PO] 
{max} 

(4.15) 

where t:. is any t:. pattern belonging to [pqO]. This selects 
one term from the left-hand side, since there is but one 
(r s) in each multiplicity set [if the multiplicity is 1 then 
(r s) becomes the unique pattern]. The result is just the 
expression of the abstract operator identity as follows: 

r p (:') 0 "l' r p (:') 0 oJ 

[ 

(r') J t ~ (r') J = 6 p-q 0 0 p-q 0 0 
(r').(r") 

p-q 0 p-q 0 

p-q p-q 
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(4. 16a) 

where the sum is over all patterns (r') and (r") such 
that 

[A'J + [A"J = [AJ = [A(rs)]' (4. 16b) 

We, in turn, infer from Eq. (4. 16a) the complete result 
(except for phase) 

where the denominator function is now given explicitly by 

1/ I DC~1:2 :~JX 
= 6 1/ID([Ai Az A3J) D([A1A2

A
3J)12, 

[L;'],[L;"l [P -q 0 OJ [q q 0] 
(4. 17b) 

where the summation is over all A patterns [A' J and 
[A"J, s".lch that Eq. (4. 16b) holds. In order to avoid re
writing Eq. (4. 17a), we have identified the phase factor 
by the technique used in obtaining Eq. (3. 49). 

The value of the restricted A pattern function in Eq. (4. 17a) 
is, of course, given completely by the pattern calculus 
rules. Equation (4. 17b) is also explicitly known from 
Sec. 3D. For completeness, we n,)te the values of the 
two denominator functions appearing in Eq. (4. 17b): 

D 1 2 3 ([mJ) ([A' tl' tl' J) 
[p - q 0 0] 

[ 
(Ail! Az)! (A3)! 

(p -q)!~'([m] + [tl']) 

x fI (A', + tl' + 1)!(Pi3 - Pj3 + A:)] 1/2, (4. 18a) 
i<)=1 I) A~+A~+l , J 

D 1 2 3 ([mJ) (
[All A" All]) 
[q q 0] 

[

(q - A])! (q - tl2)! (q - A3)! 
q!:IY([m] + [A"]) 

3 
X ,n (2 q - tl7 - tlj + 1)1 

~ < J:: 1 (
Pi3 - Pj3 + q - Aj')~ 1/2 
2q - tl;'- tlj' + 1 ~ 

(4. 18b) 

{The denominator function (4. 18b) is obtained from Eq. 
(3. 52c) for n = 3 upon replaCing Ai by q - A~ andp by q. 
We also remark that the value of the denominator func
tion (4. 18a) which occurs in Eq. (4. 17b) is obtained by 
shifting the labels [m] in Eq. (4. 18a) to [m] -7 [m] + [A"], 
Le.,Pi3 -7 Pi3 + Ai'.} 
It is a remarkable fact that the boson factorization 
lemma together with the geometrical properties of the 
A pattern functions have led us uniquely to the result, 
Eqs. (4.17). Of course, the expression (4. 17b) for the 
denominator function, while explicit, is very complicated, 
and one can not be too satisfied with it. The structure of 
the result, Eq. (4. 17a), is however, quite elegant, and as 
we shall see in II the denominator function itself pos
sesses symmetry properties and structures of an unex
pected nature. Yet it is these very properties which the 
denominator must have if our program relating to null 
spaces is to be fulfilled. 

We now turn to a further structural interpretation of the 
denominator function in terms of the sum-over-paths 
concept. 

C. The sum-oyer-paths formulation of the denominator 
function 

Equation (4.12) has a second interpretation. Observe 
that in the boson expression (4.11) we can write the 
(P - q)al 's and the q aH's as a string of p factors in p! 
ways, there being (~) distinct arrangements. 

This commuting property of bosons implies that in Eq. 
(4.12) we may similarly write the p - q factors 

(4. 19a) 

and the q factors 

(4. 19b) 

in any order whatsoever, without changing the equality of 
the resulting expression to the left-hand side. Again 
there are (g) distinct arrangements. 

Let us now introduce the notation 

peT) = (4.20) 

Then we can write Eq. (4. 12) in the form 

6 rp 
(r s) l p 

p 
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where 

(\ ... A2A1) == (T p_q'" T2T 17q '" 7 27 1), (4. 21b) 

and where <P denotes a permutation of the p symbols 
TT ... T77 •.• 7 containing (p -q)T'S andqr's,and the 
summation over <P is over all (g) distinct per.mutations 
of these symbols. Note also that the summatIOn over 
~ny Ti index is from 1 to 3, that of any 7i index from 1 to 
3. 

If we now take the matrix element (4.15) of Eq. (4. 21a), 
we obtain the following abstract operator identity: 

= (gf1 6 6 <P[Pt(Ap)P(Ap)' •. Pi(Al)P(A1)], 
Ap "'A2 A1 (l> (4.22) 

where the ~umm~tion is over all (Ap ' •• A2A1) == 
(Tp _q '" T1Tq '" T1 ) such that Eq. Cit. 7b) holds. We now 
see that the summation over <P in Eq. (4. 22) may be 
dropped by the follO\ying simple device: Let any \ de
note either a T j or a T j • Then we may write 

(4. 23a) 

where the summation is now over all sets (Ap ' .• A2A1) 
containing (p - q hi'S (1 s: Ti s: 3) and q 7i 's (1 s: 7i s: 3), 
such that 

p 

6 ~(Ai) = [~]. (4. 23b) 
i ~ 1 

Finally, upon defining 

(4.24) 

we obtain from Eq. (4. 23a) precisely the result, Eq. 
(4. 17a), where now the denominator function is expressed 
by 

1 / ID(\~l :2 ~f]) \ 2 
= ($r

1 A'~A \d .•. ld d \2' 
p 2 1 Ap ,1.2 Al 

(4.25) 

Let us note the following features of the sum-over-paths 
interpretation of this result: 

(1) Each set of integers satisfying Eq. (4. 23b) describes 
a path from the lattice point [m13m23m33] of R3 to the 
lattice point [m 13 + ~lm23 + ~2m33 + ~3],and the 
value of the corresponding term defines the path con
tribution to the sum, where the sum is now simply the 
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expression of all path contributions from admissible 
paths between [m] and [m] + [~]. 
(2) The paths are defined by six elementary steps 
(shifts) [100], [010], [001], [011], [101], and [110]. The 
normalization ($)-1 is a direct consequence of the occur
rence of two types of elementary steps. 

(3) The number N of ~(T)-type steps and the number N 
of ~(7)-type steps is uniquely determined by the shift 
values [~1 ~2~3] and the total number of steps N + N = p. 
[Hence, it is only necessary to specify that the Ap ... A2A 1 
in the summation satisfy Eq. (4. 23b).] 

(4) For q = 0, Eq. (4. 25) reduces to Eq. (3. 26b) (for 
n = 3). [Similarly, for p = q it agrees with the result 
implied by our results of Sec. 3, but not noted explicitly.] 

(5) In view of items (1)-(4), we see that the sum-over
paths interpretation of Eq. (4. 25) generalizes the usual 
path formulation in two ways. An overall normalization 
occurs to account for the two types of steps; and the 
admissible paths in the sum are restricted to a fixed 
number p. {Observe that in Eq. (3. 26b) the shift [~] 
itself fixes the number of admissible paths.} 

D. Recursion relations for the denominator function 

The defining relation for the denominator function, Eq. 
(4.25), is conceptually quite simple, but for determining 
the properties of the denominator directly this relation 
proves to be both complicated and difficult. We are 
therefore led to approach the study of this function 
through the use of recursion relations which it satisfies. 

The simplest derivation of such recursion relations 
proceeds directly from the sum-over-paths formulation, 
Eq. (4. 25). First, let us observe that the (g) sums in Eq. 
(4.25), each corresponding to a definite ordering of 
(TT ..• T)(7 .•. 7), are, in fact, all equal. (This property 
is clear from the derivation.) Thus, the right-hand side 
of Eq. (4. 25) may also be written in the form 

1 

where Ap' •• ~2A1 i:, a definite arrangement of 
(T p_q ..• T 1 )(Tq •.• T 1) satisfying, of course, Eq. (4. 23b). 
In Eq. (4. 26), let us replace p by P - 1 and q by q - 1 
and denote the corresponding [~] by [~1 ~2~3]' and 
ch_oose an arrangement of (Ap- 1 •.• A2A1) such that Al is 
aT. The relation 

1 

~2 ~']) 1
2

' 
- 1 ~] d!1(r) 

q (4.27) 

where [~'] = [~] - ~(r), then follows immediately. 

In order to simplify the recursion relation (4.27), it is 
convenient to introduce some auxiliary quantities. We 
first define for all i,j = 1,2,3 the quantities 

(4. 28a) 

noting that Xii = 0 and Xji = - Xij' In terms of the xij ' we 
also introduce 

(i,j, k cyclic in 1,2,3), (4. 28b) 
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noting that 

(4. 28c) 

Finally, we introduce the auxiliary function Gq (6; x) = 
Gq(616263;x1x2X3) by the definition as follows: 

[DC .'.:.'))([mll] 2 

[p q 0] 

[(p _q)!:J)I([m] + [6])/61 !62 !63 !J 

[ )
3 (X .. + 6. )~ x 1. n (6. + 6 + I)! IJ I G (6' X). 

I<J~l I J l4 + 6. + 1 q , 

J (4.29) 

Observe that since 6 1 + 6 2 + 6 3 = P + q, the label p is 
implicitly defined in Gq (6;X). 

Using the explicit value of dc,(T)([m]) given by the pattern 
calculus rules and introducing the preceding definitions, 
Eq. (4. 27) yields the following explicit recursion rela
tion for Gq (6;X): 

x1xr3Gq(616263;x1x2x3) (4.30) 

= 6 16 2X3(6 3 -X1 )(6 3 +x2)(61 +X 3)(6 2 -x3) 

X Gq_1 (6
1 

- 1,62 -1, 6 3;x1 + 1,x2 - 1,x3 ) 

+ 6 26 3X1(6 1 -X2 )(6 1 +X 3 )(62 +x1 )(6 3 -Xl) 

X Gq-1(6 1, 6 2 -1, 6 3 - 1;xl'x2 + 1,x3 -1) 

+ 6 36 1X2(6 2 - X3 )(6 2 + X1 )(63 + x 2)(6 1 - x 2 ) 

X Gq- 1(6 1 -1, 6 2 , 6 3 - 1;x1 -1,x2,x3 + 1). 

Observe that for q = 0 the factor in Eq. (4. 29) in front 
of Go (6; X) is just the value of the denominator function 
(4. 18a); hence, the boundary condition for our recursion 
relation is 

(4.31) 

An equally valid recursion relation is obtained from Eq. 
(4.27) simply by shifting dc,(T) to the left of the denomi
nator function in the sum. The resulting recursion rela
tion for Gq (6; x) reads 

(Xl + 6 2 - 6 3 )(x2 + 6 3 - 6 1 )(X 3 + 6 1 - 6 2) 

x Gq(616263;x1x2x3) 

= 6 1 6 2(X 3 + 6 1 - 6 2)(62 + X 1)(61 - X 2)(61 + X 3) 

X (62 -X3 )Gq-1(6 1 -1,62 -1,63;X1X 2X3 ) 

+ 6 26 3(x 1 + 6 2 - 6 3)(63 + X2 )(6 2 -x3 )(62 + Xl) 

X (63 -x1 )Gq-1(61' 6 2 - 1, 6 3 -1;X1X 2X3) 

+ 6 36 1(X 2 +63 -61)(61 +X 3 )(63 -X1)(63 +X2 ) 

x (61-X2)Gq_1(61-1,62,63-1;X1xr3).(4.32) 

It is noteworthy that in this second recursion relation 
the Xi variables are not shifted. The boundary condition 
is, of course, as before: G o(6;X) = 1. 

Two additional recursion relations for Gq (6;X) may also 
be obtained from a relation of type (4. 27): Simply replace 
T by T. We will, however, not require these relations. 

The great advantage in using the recursion relations 
derived above is that this approach makes evident many 
essential properties of the denominator function. It is 
already evident that the functions Gq(6iX) must exhibit 
a great deal of symmetry. We defer, however, the dis
cussion of these properties to II, where the proper-
ties of the functions G q( 6; x) will be developed system
atically and fully. 

Let us note here the results for q = 1 and 2, obtained by 
the direct iteration of Eq. (4. 30). The result for q = 1 
is easily found: 

G 1(6;X) =-616 2(61 +X 3 )(62 -X 3) 

- 6 26 3(62 +X1 )(6 3 -Xl) - 6 36 1(6 3 +X 2 )(6 1 -x2) 

- 6 16 26 3(61 + 6 2 + 6 3), (4.33) 

where, in obtaining this form, it is essential to make use 
of relation (4. 28c). The result for q = 2 already pre
sents a formidable calculation. It can, however, be 
accomplished directly from Eqs. (4. 30) and (4.33) with 
the result 

G2 (6;X) 

= {61(61 -1)62(62 -1)(61 + x 3 )(61 + x3 -1) 

x (6 2 -x3 )(62 -x3 -1) 

+ (cyclic permutations of 1,2, 3)} 

+ {2 6 16 2 6 3(6 3 -1)(62 + X1)(6 3 -X1 )(63 + X2 ) 

X (61 -X2 ) + (cyclic permutations of 1,2, 3)} 

+ 2(61 + 6 2 + 6 3 - 1){61 (61 - 1) 6 2 (6 2 - 1) 

X 6 3(61 + X 3)(62 - X 3) 

+ (cyclic permutations of 1,2, 3)} 

+ 6 1(61 -1)62(62 -1)63(6 3 -1)(61 + 6 2 + 6 3) 

X (61 + 6 2 + 6 3 - 1). (4.34) 

The direct calculation of G3 (6;X) is an almost impos
sible task. Fortunately, it is not required. Further 
detailed calculations of this type would lend little to 
one's understanding of the structure of the result. Since 
the discussion of structure is the central theme of the 
present work, our indirect rederivation [to be given in 
II] of Gq (6;x), using onlv its structural properties 
is certainly more instructive, and probably more im
portant, than the mere fact that this rederivation shows 
that an alternative form for the denominator function 
exists. 

For completeness of the present paper, however, let us 
note this alternative form for Gq , in detail. We will, 
however, give our initial intuitive arguments leading to 
this form, deferring a complete proof to II. 

Suppose there were no shifting of the variables (either 
in 6 i or Xi) in the right-hand side of Eq. (4. 30). Clearly, 
the general solution to this simpler recursion relation 
is just 

(4.35) 

where q is an ordinary power. 

It is evident that some sort of "factorial rule" is opera
tive in obtaining the actual solution to Eq. (4. 30), which 
has the role of accounting for the shifts in the variables. 
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This type of behavior is quite familiar from Gel'fand's23 
symbolic interpretation of the (known) SU(2) Wigner 
coefficients in terms of the Jacobi polynomials. Indeed, 
this type of behavior can be understood in much simpler 
terms. Consider the binomial theorem written in the 
form 

(x +y)q/q! = 6 ."(Syt/s!t!. (4.36) 
s, t 

S +t~q 

It is a remarkable fact that under the substitutions 

XS/s! ~ (~), yt/t! ---> W, 

(x +y)q/q! ---> (X;Y), 

(4. 37a) 

(4.37b) 

we obtain from Eq. (4. 36) the following correct general 
binomial relation 

(4.38) 

(This procedure generalizes, in fact, to the multinomial 
theorem.) 

It is even more remarkable that this same procedure 
with only slight modifications may be used to conjecture 
the solution to recursion relation (4.30): Using the 
quadrinomial theorem, we expand [G 1 (A; x)]q, collecting 
together the powers of All A2, A3, but leaving the powers 
in (A1 + x 3)' etc. as well as (A1 + A2 + A3) undisturbed: 

[G 1 (A;x)]q 

= (-1)qq! 6 ArklArk2Ark3(A1 + A2 + A3)k4 
(k) 

X (A2 +X 1)k1 (A3 -X1)k1 (A3 +X2)k2(A1 -x2 )k2 

X (A 1 + X3)k3(A2 -X3)k3/(k 1)! (k 2 )1 (k 3)! (k 4)!, 

(4.39) 

where the sum is over all nonnegative integers (k) = 
(k1k2k3k4) which add to q, i.e., k1 + k2 + k3 + k4 = q. 
In this result, we now make the replacements 

(A2 +x1)kl/kl! ~ t2k:X1) ,etc., 

with the single exception: We replace (A1 + A2 + A3)k4/ 
(k 4 )! by 

(A1 + A2 + A3 k~ k1 - k2 - k3) . 

The result is the following polynomial in X 1 'X 2 'X 3 ' 
which we denote by G~(A;X)(C denotes "conjectured"): 

GC(A;X) = (-1)qql 6 1 2 3 1 2 3 
(

A + A + A - k - k - k ) 

q (k) k4 
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One then easily verifies 

(4.41) 

for q = 0, 1, 2. The proof that this result is correct for 
arbitrary q requires a careful analysis of the properties 
of Gq(A;X), and we defer this study to II. rA direct proof 
that Gg (t:.; x) satisfies, say. recursion relation (4.30), 
in general, has so far eluded us.] 

E. The "stretched" Racah coefficients 

We are now able to give explicitly the Racah coefficients 
which occur in the coupling 

(4.42) 

These operator pattern couplings are uniquely deter~ 
mined by the following relation [which is a special case 
of Eq. (3.1)]: 

[

p - :r')o °llq (:") 01 
p-q 0 q 0 

p -q q 

(4. 43a) 

In this expression, (r') and (r'~ are any arbitrary opera~ 
tor patterns appropriate to [p - q 0 0] and [q q 0], 
respectively. (r s) is then a unique (but as yet undeter~ 
mined) operator pattern belonging to the multiplicity set 
determined by the A pattern 

[A] = [t:.'] + [t:."]. (4. 43b) 

Next, we use Eqs. (3. 50), (3. 52), and (3.14) (for n = 3) 
together with Eq. (4. 17a) to obtain 

~ ~ (max) ~ ~ ) ([p q 0]) [p -q 0 0] ([q q O])l ([m] + [t:.]) 
t (r s) (r') (r") ,J 

= D([t:.l A2 t:. 3])([m]) 
[p q 0] 

([t:.' t:.' A']) ([t:." t:." A"]) D 1 2 3 ([m] + [t:."]) D 1 2 3 ([m)), 
[p - q 0 0] [q q 0] 

(4.44) 
where the denominator functions are given, respectively, 
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by Eqs. (4. 29) (positive square root) and (4.18), and 
where, of course, [~] = [~/] + [~"]. 
Since the lower Gel'fand pattern couplings (Wigner coef
ficients) are explicitly known,Eq.(4.42) now becomes an 
equally explicit relation for obtaining all the U(3) Wigner 
operators of the type 

~ 
(r) y 

[p q 0] 

(M) 

(4.45) 

Let us also note that the coefficient (4.44) is not the 
most general Racah coefficient which we can obtain 
from Eq. (4. 17a). We can use the orthogonality of the 
Racah invariants4 to move the Racah invariant in Eq. 
(2.4a) to the left-hand side. Upon particularizing to 
n = 3 and choosing [M/] = [pI q' 0], [M] = [pI' q" 0], and 

" (P'+ P"O) bt . y = p'+p" ,we 0 am 

~ ~ (max) V I 
'([P q 0]) [PI q' 0] ([P" q" 0])' t (r) (r' ) (r") , 
,s s S 

l' ~ (max) ~ } 

(
[P q 0]) [pI q' 0] ([P" q" 0]) ([m] + [~]) 

(r s ) (r~) (r~) 

[ 

(rs) J 
x P

p 
q 00 

p 

~ [

(max) 1 
( p q 0 0) P' P' q' 0 0 

P' 

(' P" q" 0 O~ 

[ 

(r~) J f (r~) 1 x P' q' 0 p" q" 0 , 

P' 0 P" 0 

P' pI' 

(4.46) 

where p = P' + pI' and q = q' + q". [A reduced matrix 
element appears in this result in place of a square
bracket invariant because the U(2) Racah invariant part 
of the square-bracket invariant is unity.] Using Eq. 
(4. 17a), we now obtain 

= F [pI q' 0] q D q ([p" q" 0]) 
(

[pI q' 0]) ([P" "0]) / ([PI I 0]) 
R [pI' 0] [pI q' 0] 

[pI 0 ] 

x D 1 2 3 ([m]) D 1 2 3 ([m] + [~"]) D 1 2 3 ([m]). ([~ ~ ~ ]) f ([~I ~' ~/]) ([~" ~" ~"]) 
[p q 0] [pI q' 0] [p" q" 0] 

(4.47) 

Equation (4.44) is a special case of this more general 
result. The extra generality afforded by this coefficient 
is, however, not required in the following sections. 

F. The general projective operator 

Let us now outline an explicit procedure which could be 
used, in principle, to determine the general projective 
operator 

[ 
(r) J p q 0 . 

(y) 

(4.48) 

We first note that the canonical splitting proved in Ref. 
11 implies the existence of the following zero operators: 

(4.49) 

for all k = 1,2,3, ... ,~, and all O! = 1,2, ... , k - 1, 
where (r 1)' (r 2)' ... , (r:m) denote the ~ operator pat-
terns which are determined by a specified [~1 ~2~31 

belonging to [p q 0]. Observe that (r 1) now denotes the 
pattern previously denoted by (r s). We cannot as yet 
make any definite assignment of (r 1)' (r 2)' ... , (r:m) 
onto the ~ operator patterns having the prescribed ~ 
pattern. We only know that such an assignment exists. 

Next, consider the coupling law (2.4) for U(3) specialized 
as follows: 

r P <:')0 OJ r ;~q 0 0 OJ Wl, rq 
q q 00Y·50) 

'Y {R}2 

where we note that for the relevant labels the square
bracket invariant coupling reduces to a U(2) Racah in
variant operator coupling, as indicated, on the lower 
operator patterns. 

In order to give this coupling explicitly, it is convenient 
to introduce the following abbreviated notations in which 
we suppress the labels p and q: 
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(4. 51a) 

~ fr (max) 1\ ( 
= t CP (:k) 0]) \[P - q (;') o~ eq (:/1) 0]) ~ . 

. (4. 51b) 

Throughout this discussion, (r 1)' (r 2)' ... , (r:JTJ denote 
the distinct operator patterns determined by a specified 
!:; = [!:;1!:;2!:;3] belonging to [p q 0]. Similarly, (r') and 
(r") always denote operator patterns belonging to 
[p - q 0 0] and [q q 0], respectively, which satisfy [!:;'] + 
[!:;"] = [!:;] ([!:;] specified). 

With these notations and conventions, we may write Eq. 
(4.50) in the form 

~ 
(rk) J 

P q 0 = L; R(f )(f')(f,,)Oy(f')(f")' (4. 52a) 
(f')(f") k 

P 0 

'Y 

Similarly, we obtain 

",(C')(''') ~ E, R(")(C,)(,,,) r p (:') 0 0]' (4. 52b) 

which, in turn, implies the following relation: 

L; 0y<f')(f,,)Oy(f')(f")' (4. 52c) 
(f')(f") 

We remark that the operator 0y(f')(f") is completely 
known, the Racah invariants (4. 15b) are unknown (except 
for k = 1), and the projective operators defined by Eq. 
(4.50) are likewise unknown (except for k = 1 and'Y = p). 

We assert: The general structural relation, Eq. (4.50), 
and the canonical splitting conditions, Eq. (4.49), 
uniquely determine all U(3) projective operators of the 
form 

[ 

(rk) J 
Pp q 00, 

y 

(4.53) 

except Jor phase;Jurthermore, they determine all the 
Racah invariants of the type given in Eq. (4. 51b). 

Let us give this construction. We begin by choosing 
'Y = P in Eq. (4. 52c). The summation on the left-hand 
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side then reduces to a single term k = 1. Thus, the 
operator 

(4. 54a) 

is uniquely determined except for phase [Equation 
(4. 52c) reduces, in fact, to Eq. (4. 16a).] We choose the 
phase24 and proceed to Eq. (4. 52b) for 'Y = p. The right
hand side of Eq. (4. 52b) reduces to a single term k = 1. 
We use this equation to determine the Racah invariant 
R(f )(f')(f")' Using this Racah invariant in Eq. (4. 52a), 
we lobtain the projective operators 

(4. 54b) 

for all 'Y = 0,1, ... ,po 

We now start the procedure all over, beginning with 
'Y = P - 1 in Eq. (4. 52c). The left-hand side reduces to 
two terms, k = 1 and 2. But the (r 1) operator is known 
from Eq. (4. 54b). Hence, Eq. (4. 52c) and our phase con
vention determines 

(4. 55a) 

We next proceed to Eq. (4. 52b), setting 'Y = P - 1. The 
right-hand side reduces to two terms, k = 1 and 2. The 
k = 1 term is completely known as is the projective 
operator part for k = 2. This equation uniquely deter
mines R(f )(f')(f")' Going to Eq. (4. 52a), we now deter-
mine 2 

(4. 55b) 

for y = 0,1, ... ,p - 1. 

One easily sees that continuing this procedure leads to 
the proof of the assertion made above. Let us remark 
that since [!:;] was arbitrary, our proof applies to the 
operators in each multipliCity set, including multiplicity 
one. 

We can now make the final statement: The general coup
ling laws and the canonical splitting in U(3) determine 
uniquely all projective operators except for phase. The 
same statement applies to all Wigner operators. 

Proof: The U(3) projective operator [p q 0] is ob
tained from the coupling 

o 00 {R} 

J [R] 

(4. 56) 
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But the lower operator pattern couplings are known, and 
the upper operator pattern couplings are just the 
R(r)(I")(I''') obtained above. (A similar proof applies 
directly to the Wigner operators.) Finally, the general 
projective operator [M] is obtained from those of the 
type [p q 0] by the following relation: 

r ll 1 M33 

r 12 r 22 1 1 

M 13 M 23 M33 1 1 1 

Y12 Y22 1 1 

Yll 1 

r ll -M33 

r 12 -M 33 r 22 -M33 

x M 13 -M33 M 23 -M 33 0 

Y12 -M33 Y22- M 33 

Yll-M33 
(4.57) 

for arbitrary integers M 13 2: M 23 2: M 33' 

The algebraic procedure described in this section is 
logically complete; but it is a major task to implement 
these techniques to obtain explicit results. Indeed, the 
only explicit operator we have given is the important 
one which occurs at the very first step, (4. 54a). Here it 
was the underlying geometrical properties of the arrow 
patterns which led to a relatively simple interpretation 
of the structure of this operator. Our principal program 
is to uncover additional structures which will make 
these seemingly complicated algebraic manipulations 
explicable. 

In this connection, we would like to note25 that in U(3) 
there is preCisely one projective operator which is also 
a Wigner operator-the isoscalar: 

(4.58) 

Thus, one could construct this operator from the coup
ling, Eq. (4. 56), and proceed to determine the general 
Wigner operator 

~ (r) ~ [p 0] 

(M) 

(4.59) 

by using the generators. 

G. The null space of the Wigner operator (rs ) 

As remarked in the preceding section, the only explicit 
operator which we have constructed is the one labeled 
by (r 1) = (r s ). This operator already exhibits consider
able complexity, and clearly one must understand this 
structure before embarking on the more general pro
gram. Accordingly, we will now determine the conditions 
which specify the null space of the Wigner operator 
labeled by (r s ) 

If one examines the general expression [Eq. (2.46) of 
Ref. 4] relating Racah invariants to Wigner operators, 
it is clear that the null space of a Wigner operator 
corresponds to the vanishings of a Racah coefficient. 
In particular, if we denote the null space of the Wigner 
operator (4.45) by :JL(r s)' then 

~ all irrep spaces with labels [m]:( 

:JL(rs) = t ([b 1 ~2 ~3]) , . 
(4.60) 

D ([mj) = 0 
. [P q 0] / 

Thus, this null space is determined by the zeros of the 
denominator function 

(4.61) 

Examining Eq. (4. 29), one sees that the determination of 
the zeros of the denominator function requires detailed 
knowledge of the properties of the function Gq(~;x). 
These properties are developed fully in II, where it is 
proved that :JL(rsl = :JL(r1). where :JL( r 1) is the maximal 
null space occurring in the series given in Conjecture 1 
of the Introduction. 

5. CONCLUDING REMARKS 

We began our discussion of the structural properties 
of the canonical tensor operators by examining the totally 
symmetric operators in U(n). The underlying structural 
property which accounts for the simplicity of a class of 
these operators (and their conjugates) was shown to be 
geometrical in origin-the no opposing arrow property. 
[The factorization lemma was demonstrated to be a 
useful tool for obtaining explicit abstract results with
out requiring the more technical manipulations of the 
algebraic method (Racah invariants, etc.).] We were then 
led to the discovery of the more general arrow pattern 
analYSis for the denominator functions as well as the 
sum-over-paths formulation. 

Turning to U(3), it was demonstrated that the origin of 
the canonical splitting was again geometrical. However, 
thus far, this property leads directly to the construction 
of but one operator in each multiplicity set, although the 
canonical splitting determines, in principle, all opera
tors. 

The outstanding problems of most immediate interest 
are for U(3): We must demonstrate that the null space 
of the Wigner operator labeled by (r s) is, as asserted, 
the maximal null space. The explicit form (numerical 
array) of this operator pattern must be obtained. These 
two tasks require further development of the properties 
of the function Gq(t.;x) and are carried out in the second 
paper of this series. Finally, there is the very difficult 
task of implementing the construction of the general 
projective operator in U(3) in accordance with the cano
nical splitting of the multiplicity. While some progress 
has been made in this direction, the task remains, for 
the most part, incomplete. 

One can still proceed a great deal further with the dis
cussion of the general structures of tensor operators in 
U(n). We shall continue this analysis in the third paper 
of this series, obtaining in the process new structural 
results for U(3). 
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The canonical splitting of the multiplicities of the unit tensor (Wigner) operators in U(3) was used in I to determine explicitly 
one Wigner operator in each (arbitrary) multiplicity set. The denominator function whose zeroes define the nun space of this 
Wigner operator is presented in a new form from which the complete identification of the null space is made. Using the pro
perties of the intertwining number of U(3), the null spaces of all the U(3) Wigner operators are determined, and it is demon
strated that the null spaces of the operators belonging to a multiplicity set are Simply ordered by inclusion. The Wigner opera
tor previously obtained from the canonical splitting is shown to be the one haVing the maximal null space for its multiplicity 
set. 

1. INTRODUCTION AND RESUME 

The present paper continues with the study, initiated 
in the first paper of this series,l of the structural 
properties of the canonical tensor operator labeling 
in the unitary groups. We now direct our attention to 
the symmetry group U(3), since the existence of the 
canonical splitting of all multipliCities [for U(3)] has 
been previously proved. 2 

A general procedure for constructing these unique (to 
within phase) operators implied by the canonical 
splitting was outlined in Paper I. It was emphasized 
that, while the procedure is definitive, the explicit 
construction of these unit tensor (Wigner) operators 
is a difficult task. Furthermore, even if accomplish~ 
ed, the resulting matrix elements are likely3 to be 
too complicated to understand unless one undertakes 
simultaneously the study of the structure of each 
result. 

We were able to demonstrate,l in particular, that 
each multiplicity set of unit projective operators 
contains one operator whose structure is uniquely 
and Simply determined to within a normalization by 
the geometrical properties of the arrow-patterns of 
the fundamental projective operators and their con
jugates. (Indeed, it is quite likely that the origin of 
all the unit projective operators in a multiplicity set 
will ultimately be related to the geometrical proper~ 
ties of these arrow-patterns.) This led to the explicit 
form 

where F R is a restricted arrow-pattern function 
whose value is read off directly from the pattern cal
culus rules. The denominator function D is a seem
ingly very complicated function, which nonetheless 
could be determined explicitly through the use of the 
Factorization Lemma. The resulting form was, how
ever, too complicated to understand directly. Turning 
to the sum-over-paths formulation (which again used 

1985 

the Factorization Lemma), we were able to derive in 
a simple way two recursion relations satisfied by the 
denominator. In this paper, we will approach the 
study of the properties of this denominator function 
through these recursion relations. 

The properties of the denominator function D are far 
more important than its occurrence in Eq. (1. 1) would 
seem to indicate. This is true because it is the 
zeroes of this denominator function-the set of irrep 
labels {[ m]} such that the denominator function vani
shes-which determine completely the null space of 
the Wigner operator labeled by (r 5).1 Since the prin
cipal aim of this series of papers is to illustrate and 
discuss structural properties of the canonical tensor 
operators, a complete elucidation of the properties of 
the denominator function is central to this purpose. 

Let us note from Ref. 1 that the denominator function 
may be written in the following form: 

D([~l ~2 ~3])([m]) 
[p q 0] 

[ 

~1! ~2 ! ~3 ! 

- (p + q) ! ~l)t ([ m] + [~]) 

where 
Xij = Pi3 - Pj3, 

and 

3 
f1 (~i + ~j + 1)! 

i<j=l 

(1. 2b) 

(i, j, k cyclic in 1,2,3). 

(1. 2c) 

(1. 2d) 

Let us observe: The first square root factor in Eq. 
(1. 2a) is precisely the result of applying the genera
lized denominator pattern calculus rules to the ~ pat
tern [~l~2~3]' us{ng a path weight appropriate to 
[p + q 0 0]. We insist that this factor has not been 
artifically introduced, since for q = 0, 

Go(~;x)=1, (1. 3) 

and the occurrence of the factor is essential. 

Let us now summarize the plan of this paper. In Sec. 
2, the properties of the function G q(~; x) are develop
ed in detail. The proof is given that 

(1. 4) 
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where the function G~(~ ;x) was given explicitly in 
Paper I. These properties include the determination 
of the symmetries of G q (~ ; x) and the determination 
of the zeroes of G q (~ ; x). As previously noted, know
ledge of these zeroes is essential to the discussion of 
the null space properties of the Wigner operator 
labeled by (r s)' 

Since the role of the null spaces in the characteriza
tion of the canonical tensor operators is basic to our 
emphasis on structure, we give in Sec. 3 both alge
braic and graphical representations of the intertwin
ing number of three irreps of U(3). This intertwining 
number, in turn, is then shown to determine a priori 
the null spaces of the Wigner operators and the nest
ing property of the null spaces of the Wigner opera
tors in a multiplicity set is demonstrated. (Hence, 
the null spaces are simply ordered.) 

In Sec. 4, the uniquely determined (by the zeroes of 
the denominator function) null space of the Wigner 
operator labeled by r s is shown to be precisely the 
maximal null space determined by the abstract pro
perties of the intertwining number. Observe that we 
have no choice in the determination of these null 
spaces. 

Up to this point, the operator pattern (r s) has been a 
mere label, although from general principles we know 

that it belongs to a multiplicity set of operator pat
terns having ~ pattern [~l6.2~3]' In Sec. 5, we show 
how the specific numerical aSSignment of this pattern 
is induced by taking limits. 

2. DETERMINATION OF THE DENOMINATOR 
FUNCTION 

A. Recursion relations 

We wish to determine the function Gq(~;x) through 
properties which are implied by the two recursion 
relations which it has been shown to satisfy.l We 
gain greater generality (thereby simplifying some of 
the proofs to follow) by replacing the integral para
meters ~l' ~2' 6.3 by arbitrary parameters h, ~2' ~3' 
respectively, where ~ :::: (~l ~2~3) may be any point of 
R3. We furthermore regard the point (Xlx 2x 3) as an 
arbitrary point satisfying the barycentric condition 

(2.1) 

Le.,x = (xlX2x3) is an arbitrary point in the Mobius 
plane. 4 

We seek the functions G (~; x), q:::: 0,1, ... , which 
satisfy the two recursio~ relations as follows [cf. 
Eqs. (4.30)-(4.32) of Ref. 1]: 

x l x 2x 3G q(h ~2~3 jX l X2x 3) :::: ~l ~2X3{~3 - xl)(~3 + x 2)(h + x3m2 - x 3)G q_l (~l - 1, ~2 - 1, ~3 ;xl + 1,x2 - l,x3) 

+ ~2~3xl (~l - x2)(h + x3)(~2 + Xl)(~3 - Xl) G q-l (~l' ~2 - 1, ~3 - 1 ;x1 ,x2 + 1, x3 - 1) 

+ ~3hx2(~2 - x3)(~2 + Xl)(~3 + x2)(h - x2) G q-l (~1 -1, ~2' ~3 - 1 jXl - l,x 2,x3 + 1), 

(Xl + ~2 - ~3)(x2 + ~3 - ~1)(x3 + h - ~2)Gq(~l~2~3;XIX2X3) 

(2.2a) 

:::: h~2(x3 + ~l - ~2m2 + x l )(h -x2)(~1 + x3)(~2 -X3)G q- l {h -1, ~2 -1, ~3jX1X2x3) 

+ ~2~3(xl + ~2 - ~3m3 + x2),(~2 - x3m2 + xlm3 - Xl) G q-l (h, ~2 - 1, ~3 - 1 jXl xr3) 

+ ~3h (x2 + ~3 - h)(h + x3)(~3 - xl)(~3 + x2)(h - x 2) G q-l (h - 1, ~2' ~3 - 1 i Xl x 2x 3), (2. 2b) 

where 

Go(~iX)=1. (2.2c) 

We note that either of these recursion relations de
termines 

G1 (~;x) = - h ~2(h + X3)(~2 - x 3) 

- ~2~3(~2 + x l m3 - Xl) 

- ~3~l (~3 + x 2)(h - x2) 

- h b~3(~1 + ~2 + ~3)' (2.3) 

where relation (2. 1) must be used to obtain this form. 
One could, of course, continue to iterate, say, Eq. 
(2. 2a) directly to obtain Gq(~ ;x). However, this 
direct iteration does not lead easily to the answer we 
seek, namely, that Gq(~ ;x) is a polynomial of degree 
2q in the variables x (Proposition 2 below). We 
therefore follow the course of studying the recursion 
relations directly. 

8. Symmetry relations 

The first property of the function G q is almost self
evident: 
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Lemma 1: The function G q (~ ; x) has the symme
try: G q(P~ j Px) :::: G q(~, 0 pX), where P denotes a per
mutation of the indices 1,2,3 (P E 53) and 0 p is the 
signature of P. 

Proof: The function Go(~ jX) = 1 certainly posses
ses this symmetry. It is also evident, by inspection, 
that the recursion relation (2.2a) shows that Gq pos
sesses this property, if G q-l does. The result follows. 

To obtain the next property, it is convenient to note 
that the factors on the right-hand side of Eq. (2. 2a}
the factors that multiply the G q_l-are but cyclic per
mutations of a single function. That is, we define the 
function g(~,x) to be 

g(Lx) == h~2x3(~3 -x l m3 + x 2)(h + x3m2 -x3)· 

One next observes that g(~ ;x) has the symmetry 

g{h ~2~3 ;x l xzX3) :::: g{h, ~3 - Xv ~2 + Xl ;xlx2x 3 )· 

(Verification of this symmetry requires use of the 
relation Xl + x2 + x3 = 0.) 

Using the recursion relation (2. 2a), one now sees 
easily that this same symmetry extends to the 
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Gq(~,x), since the symmetry is obviously true for 
Go = 1. Hence, we have proved: 

Lemma 2: The function G q (~, x) has the symmetry 

Gq(h, ~3 - xl> ~2 + xl ;x l x 2x 3) = G q(~ ;x). 

The symmetry given in Lemma 2 has the feature that 
the x's stay fixed while the ~'s are changed. A simi
lar feature occurs in the second form of the recur
sion relation (2. 2b). By using both recursion rela
tions' we will obtain a symmetry for G q in which the 
x's vary and ~'s stay fixed. 

Lemma 3: The function Gq(~'x) has the symmetry 

Gq(~1~2~3; -xl - ~2 + ~3' -x2 - ~3 + h, 
-x3 - ~l + ~2) = Gq(~ ;x). 

Proof: Let us assume that this symmetry is true 
for G q-l' Next in the recursion relation (2. 2a), we 
make the substitutions 

Xl ~ - xl - ~2 + ~3' 
X3 ~ - x3 - h + ~2' 

x2 --j -x2 - ~3 + ~l' 
(2.4) 

(Note that this preserves the relation xl + x2 + x3 = 
0.) It will now be observed that the right-hand side of 
Eq. (2. 2a), after the substitution is made, becomes 
precisely the right-hand side of Eq. (2. 2b)! [Let us 
be explicit and note that there is an over-all minus 
sign that will cancel out. Moreover, we should note 
that we have used our assumption that the symmetry 
holds for Gq- l in making this identification with the 
right-hand side of Eq. (2. 2b).] It is furthermore seen 
that the left-hand side of Eq. (2. 2a), after the substitu
tions of Eq. (2.4) (and canceling the minus sign), now 
shows, by Eq. (2. 2b), that the symmetry must hold for 
G q' The symmetry is obviously true for Go = 1; 
hence it holds in general. 

The symmetry given by Lemma 3 may be put more 
perspicuously if we introduce new Xi variables: 

Xl == Xl + !(~2 - ~3)' x2 ==x2 + !(~3 - h), 
x3 == X3 + !(h - ~2)' (2.5) 

The subsidiary relation ~ Xi = 0 now implies that 
~xi = O. 

In the variables {xi}, the symmetry given by Lemma 
3 becomes the statement: G~(~ ;x') = G~(~; -x'). 
That is: The function G~ (~;x') == Gq (~;x) expressed 
as a function in the barycentric (Mobius) plane{xt} 
shows central symmetry in the origin xi = O. 

The symmetry properties given in Lemmas 1-3-and 
combination of these symmetries-may be put in a 
very elegant form. Let us write the function G q in the 
form 

(2.6) 

Then all the symmetries implied by Lemmas 1-3 are 
contained in the following statement. 

Proposition 1: G q(L x) written in the form given 
by Eq. (2.6) is invariant under all permutations of 
rows and columns, and under transposition. 

Proof: Lemma 3 is the statement of invariance 
under exchange of columns 2 and 3. 

Lemma 2 asserts the invariance under transposition 
(upon noting the subsidiary condition ~Xi = 0). 

Lemma 1 is equivalent to the invariance under all 
permutations of the rows, combined with an exchange 
of columns 2 and 3 if 15 p = - 1. 

Transposition, followed by exchange of rows 1 and 2, 
and again transposing, is equivalent to exchange of 
columns 1 and 2. Thus, all permutations of the 
columns can be generated. 

C. The polynomial property 

The importance of these symmetry relations, estab
lished in B above, is that they enable us to prove an 
essential property of G q: 

Proposition 2: The function Gq(~ ;x) is a polyno
mial of degree 2q in the variables xl,x2,x3. 

Proof: Consider the right-hand side of Eq. (2. 2a), 
and let x3 = 0, so that the first of the three terms 
vanishes. The right-hand side thus takes the form 
(x3 == 0 =xl = -x2 == x): 

RHS = ~l ~2~3x(x + ~l)(x + ~2)(x - ~3) 

x {Gq-l(h -1, ~2' ~3 -1;x -1, -x, 1) 

- Gq - l (~l> ~2 - 1, ~3 - l;x, - x + 1, - I)} . 

Using Proposition 1, one sees that the two G q-l above 
are equal; hence, the right-hand side vanishes for 
x3 = O. Therefore, the right-hand side has x3 as a 
factor and thus, by symmetry, the factor xlx2x 3. 

That the degree is at most 2q follows easily by in
duction. That the degree is precisely 2q follows by 
examining a special case given below [Eq. (2.7)]. 

We now turn to developing explicit special cases for 
Gq • The simplest such case occurs for ~3 = O. It 
follows easily from Eq. (2. 2a) that G q (h ~20; x) has 
the form 

(2. 7a) 

where 

C)=Z(Z-I) ... (z-q+ 1)/q! (2.7b) 

denotes the binomial function. 

Using Proposition 1, this result can be given a wide 
variety of forms. 

Let us note, for completeness, that this result suffices 
to establish that the G q polynomial possesses precise
ly degree 2q. 

More interesting results obtain for special values of 
the Xi variables. Let us take Xl = ~3' It follows 
easily once again from the recursion relation (2. 2a), 
that we have the result 
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(2.8) 

independent of the result given in Eq. (2. 7a). Actually 
both results may be given as special cases of an ele
gant general result: 

Lemma 4: 

and define the nine entries in this 3 x 3 array to be 
(gjj)' If one of the entries is zero, say g12' then 

Gq = (_ )q(q [)4(:11) (:13) (:22) (:32). 

Note that the entries for the binomial functions in 
this result are those elements of the 3 x 3 array 
which occur in the row and column containing the 
zero element. 

The proof is obvious from Eqs. (2. 7), (2. 8), and Pro
position 1. 

Let us obtain one more general property of the func
tion Gq • 

Lemma 5: Assume that q - I;j is a nonnegative 
integer. Then G q has the factor 

(
I;j + X i) (I; k - X j), 
q - I;j q - I;j 

where (ijk) is a positive permutation of (123). 

Proof: Assume this property is true for G q-1' 
Then the recursion formula (2. 2a) shows that the 
property is then true for G q' Since this property can 
be verified to be true for Gl1 it is therefore true in 
general. 

D. The zeroes of Gq 
The general properties of the function G q' which have 
been demonstrated above, are the tools by which we 
will seek to understand more of the nature of the 
function. Since this function is now known to be a 
polynomial (Proposition 2), it is natural to inquire 
about the set of points {(x1'x 2 ,x3 )} on which the 
polynomial has the value zero. The significant result 
which is required to understand the zeroes of G q(l;; x) 
is 

Lemma 6: Let ~3 - xl and ~l - x 2 be nonnegative 
integers. Then Gq(l;;x) has the value zero for all 
such integers satisfying (~3 - Xl) + (h - x 2 ) ::s q - 1. 

Proof: Assume the property is true for G -1' 

Then the recursion relation shows the property to be 
true for G q' Since the property can be verified to be 
true for G1 , it is true in general. 

The set of points defined in Lemma 6 is just the set 
of lattice points lying on the boundary of, and interior 
to, an equilateral triangle in the Mobius plane. The 
vertices of the triangle are located at the points 
(~3' h, - h - ~3)' (~3' ~1 - q + 1, - ~3 - h + q-l), 
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and (h - q + 1, h, - h - ~3 + q - 1). Thus, the 
triangle has q lattice paints on each of its sides and 
contains q(q + 1)/2 lattice points in all (if one vertex 
point is taken as the origin, then by lattice points of 
the triangle we mean the set of points on the boun
dary of, and interior to, the triangle which have inte
gral coordinates). 

If we now consider the positive permutations of a 
point (x1,x2,x3) together with the central symmetry 
of Lemma 3, we obtain six triangles in the Mobius 
plane, the lattice points of which are zeroes of the 
polynomial function Gq(~ ;x). If we suppress the x3 = 
- xl - X 2 coordinate, then the polynomial G q (I; ; x) 
has value zero on the following set of points Z: 

Z = {(1;3 - a1, h - b1), (- 1;2 + a2, - 1;3 + b2), 

(1;1 + 1;3 - q + 1 + a3 , - 1;3 + b3 ), 

(q - 1 - h - 1;2 - a4 , 1;1 - b4 ), 

(- 1;2 + a5 , h + 1;2 - q + 1 + b 5 ), 

(1;3 - a6,q - 1- 1;2 - 1;3 - b6): (aj,b j ) 

are nonnegative integers such that at + b j 

::s q - 1 and (h ~2~3) is an arbitrary, but fixed 

point of R3} . (2. 9) 

For a fixed point I; E R3, there are, in general, 
3q(q + 1) distinct points in the set Z. 

We are now in a position to assert a most remark
able result: 

Proposition 3: The set Z, on which G q (I; ; x) vani
shes, uniquely determines G q (1; ; x) up to a multiplica
tive factor which depends at most on 1;. 

Proof: Let us suppress the I; dependence and 
write simply 

f(x,y) = Gq(1;;x,y, -x -y). 

Then f (x, y) is a polynomial of degree 2q (Proposi
tion 2) having the form 

(2. 10) 

s+t ~ 2q 

Since f (X, y) vanishes on the set Z, we have 

E each (x, y) E Z. (2.11) 
s.t 

s+t ~ 2 q 

These equations comprise a system of 3q(q + 1) 
homogeneous algebraic eguations in the (q + 1)(2q + 1) 
unknown coefficients {a st }' Let M = (xsyt) denote the 
matrix in which the columns are enumerated by the 
(q + 1)(2q + 1) values which sand t may assume and 
in which the 3q (q + 1) rows are enumerated by the 
points (x,y) E Z (one row for each point). The system 
of equations (2.11) can now be written as 

MA =0, (2.12) 

where A is the column matrix of (q + 1 )(2q + 1) rows 
having the {a st} as elements. Then the necessary 
and sufficient condition that Eq. (2. 12) has exactly 
one linearly independent solution is 
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rank M = q(2q + 3), (2. 13) 

where this condition is to hold for generic points ~. 

Subsequently, we will give explicitly a polynomial of 
degree 2q which vanishes on the set Z lor each ~ E 
R3. The existence of such a solution implies 

rank M ::s q(2q + 3) for each ~ E R3. (2.14) 

A direct demonstration of property (2.13) is quite 
difficult. It is, however, sufficient to demonstrate that 

rank M = q(2q + 3) for ~l == ° and generic 

~2 and ~3' (2.15) 

The proof of this restricted result establishes, in 
fact, the general result by the argument as follows: If 
Eq. (2. 15) is valid for generic ~2' ~3' then also Eq. 
(2.13) is valid for generic h, ~2' ~3' since the rank of 
M can at most be decreased by setting h == 0, i.e., 
rank M = q(2q + 3) for h == ° implies rank M == 
q(2q + 3), generally. [The fact that there may exist 
certain pOints ~ E R3 for which rank M < q(2q +3) is 
of no importanc&-"we need only demonstrate that 
there exists a determinant of M of order q(2q + 3) 
which is not identically zero in ~.] 

The proof of Eq. (2. 15) will be given by a direct de
monstration that 

(~2 + X) (~3 - X) 
I(x,y) = a(~2i;3) q q (2. 16) 

is the unique polynomial of degree 2q which vanishes 
on the set of pOints 

Z' == Z for h = 0. (2.17) 

For this purpose, we introduce certain subsets Zk C 
Z' for k = 1,2, ... ,q /2 or (q + 1)/2. Z" contains the 
points as follows: 

(a)k: (1;3 - aI' - k + 1),a l == k -1,k, ... ,q - k, 

(q - 1 - 1;2 - a4 , - k + 1), a4 = 0,1, ... ,q - k; 

(bh: (- /;2 + a2 , - /;3 + k - 1), 

a2 ==k-l,k, ... ,q-k, 

(1;3 - q + 1 + a3 , - 1;3 + k - 1), 

a3 == 0, 1, ... , q - k; 

(C)k: (- /;2 + k-1, - ~3 + b2), 

b2 = k, k + 1, ... ,q - k, 

(- /;2 + k - 1, /;2 - q + 1 + bs), 

bs == 0,1, . .. ,q -k; 
(dh: (~3 - k + 1, - b1),b l == k,k + 1, ... ,q - k, 

(/;3 - k + 1, q - 1 - ~2 - 1;3 - b 6 ), 

b 6 == 0, 1, . .. ,q-k. 

[For k = (q + 1)/2 (q odd), we do not require (c) and 
(d). ] 

First consider Zi. Since I(x,y) is a polynomial of 
degree 2q which vanishes on the 2q distinct points of 
(ah, it follows that 

(
1;2 + X) (1;3 - X) 

I(x, 0) == a(/;2/;3) qq' 

Observe that it also now follows that 

I (x, 0) == 0, each (x, y) E Z'. 

We next write 

I(x, y) = I(x, 0) - yg2 q-l (x, y), 

where g 2 q-l (x, y) is a polynomial of at most degree 
2q - 1. g 2 q-l (x, y) vanishes on the 2q distinct points 
(bh of Zi· Therefore, g2q-l(x, - 1;3) vanishes identi
cally in x, and g2q-1 (x, y) must have the form 
g2q-I(X,y) == (~3 + y)g2q-2(x,y), where g2q-2~'Y) is a 
polynomial of degree at most 2q - 2. It vanishes on 
the 2q - 1 distinct points (c h of Z i. Therefore, 
g2q-2(/;2' y) vanishes identically in y, and g2 q-2(x, y) 
must have the formg2q-2(x,y) == (1;2 + x)g2q-3(x,y), 
where g 2 q-3 ~, y) is of aegree at most 2q - 3. It vani
shes on t1ie 2q - 1 distinct points (dh of Zi. There
fore, g2q-3(~.'Y) vanishes identically in y, and 
g2q-3(x,y) == (1;3 -x)g2q_4~,y),whereg2q_4(x,y) is 
at most of degree 2q - 4. Thus, the conclusion at the 
end of step 1 of our proof is that I ~, y) has the form 

I(x,y) ==f(x,O) 

+ (- y)(1;3 + y)(1;2 + x)(i;3 - x)g2q-4~'Y)' 

We continue this procedure to step 2, ... , step k, ... , 
where we assert that the conclusion at the end of step 
k (in which the points of Z k are considered) is 

I(x, y) = f(x, 0) 

+ (~Y)C3 : Y) (~2 : X)(i;3 k- X)g2 q_4 k(X,y), (2.18) 

where g2q-4k is of degree at most 2q - 4k. 

The proof of Eq. (2. 18) is by induction on k. Thus, we 
assume the validity of Eq. (2. 18) for k --) k - 1 and 
consider the implications of the vanishing of f (x, y) 
on the points of Zk' ConSidering the points (a) k of 
Z,,' we see thatg2q_4k+4(x, - k + 1), which is a poly
nomial of degree at most 2q - 4k + 4 in x, vanishes 
on the 2q - 3k + 3> 2q - 4k + 4(k> 1) distinct 
points of (a)k' Therefore, g2q-4k+4(x, - k + 1) vani
shes identically in x, and g 2 q-4 k +4 (x, y) must have the 
form 

g2q-4k+4(X,y) = (-y -k + l)g2q-4k+3(x,y). 

Similarly, we conclude, in turn, from the vanishings 
on the points (b) k' (c) k' and (d) k of Zk' the results 

g2q-4k+3(X,y) == (1;3 + Y -k + l)g2q-4k+2(X'y), 

g2 q-4 k+2(x, y) = (1;2 + X - k + l)g 2q-4k+1 (x, y), 

g2q-4k+1 (x, y) = (1;3 - X - k + 1)g2q-4k(x, y). 

The linear factors arising from step k are precisely 
the factors required to carry Eq. (2. 18) for k --) k - 1 
into the same form for k. Since the form (2.18) is 
true for k = 1, it is true generally. 

For the final step, we proceed as follows. We choose 
k = q/2 for q even and select any point (x,y) E Z' 
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such that the factors preceding go = constant in Eq. 
(2.18) are nonvanishing, e.g., (x,y) = (~3 - q + 1, 
q - 1- ~2 - ~3)' The vanishing of f(x,y) on this 
point then requires go = 0, Le.,!(x, y) = f(x, 0) for q 
even. Similarly, for q odd, we choose k = (q - 1)/2 in 
Eq. (2.18) and note that the polynomialg2 (x,y) of de
gree at most two must vanish on the points (a)(q+l)/2 
and (b)(q+l)/2 of Z(q+l)/2' These vanishings require 
thatg2(x,y) = [- y - ~(q - 1)][~3 + Y - ~(q - 1)]go· 
Finally, we select the point (x, y) E Z' above to show 
that go = O,Le.,!(x,y) =f(x,O) for q odd. 

We have now completed the proof of the result: f(x, y) 
= f(x, 0) given by Eq. (2. 16) is the unjque polynomial 
of degree 2q which vanishes on the set Z'. Proposi
tion 3 now also follows. 

E. The proof of Gq(~; x) = G&(~; x) 

Let us now turn to the proof of one of the principal 
results of this section. Namely, that the unique solu
tion to the recursion relations (2. 2) is the conjec
tured form given in I. We rewrite this conjectured 
form in terms of the polynomials in three variables 
x, y, and z defined as follows: 

(2. 19) 

Note that this function is invariant under the inter
change of y and z. The conjectured solution may now 
be written in the form 

GC(~;x) = (_ 1)qq! E (h + ~2 + ~3 - kl - k2 - k3) 
q (k) k 4 

x f q • k1(h, ~2 + Xl' ~3 -Xl) 

X fq'k/~2' ~3 + x 2 , h - x 2 ) 

X fq,k3(~3' ~l + x 3, ~2 - x 3 ), (2.20) 

where the sum is over all nonnegative integers kl' k2' 
k3,k4 which add to q: kl + k2 + k3 + k4 = q. 

The following result is immediately evident. 

Lemma 7: Gq(~ ;x) obeys the symmetries stated 
in Lemmas 1 ana 3. 

[It is, however, far from obvious that the symmetry of 
Lemma 2 is obeyed (It is, nonetheless, true). Indeed, a 
direct proof of this would be quite difficult.] 

Observing that 

(2.21) 

we obtain from Eq. (2.20) the result 

(2. 22) 

[cf. Eq. (2. 7a)]. However, because the symmetry of 
Lemma 2 is not manifest in the form (2.20), neither 
is the property (2. 8). This property is, however, 
correct as will soon be proved. 

We digress for a moment to establish two important 
properties of the polynomials (2.19): 
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q-n 
E (X + y + z - n - r) 

fq.r(x,y,z) 
r~O q - n - r 

= fq.q_n(x,x + y - n,x + z - n) (2. 23a) 

for n = 0, 1, ... , q; 
q 

r~o fq,r(x,y,z)fq,q_r(w,x + y + w - r,z - r) 

=f2q,q(x+y,x+w,z) (2. 23b) 

for arbitrary variables x, y, Z, w. 

Relation (2. 23a) is simply a polynomial interpreta
tion of Saalschlitz' s formula. 5 Relation (2. 23b) fol
lows easily from Eq. (2. 23a) upon noting that the pro
duct under the summation can be written as 

q! G)C + ~ ~ ~ - r)fq,r(X,y, w), 

using 

Now let us return to our objective: the proof that G q 

= G~. Relation (2. 23a) may be used to carry out one 
of the summations in Eq. (2. 20); one obtains three 
equivalent results, depending on which summation k i 
one elects to eliminate. Thus, combining the binomial 
factor with f q ,k

3 
and using relation (2. 23a) leads to 

G~(~ ; x) = (- 1)q q! E fq k (h ~2 + x 1> ~3 - Xl) 
(k) • 1 

X fq,k2(~2' ~3 + x 2, ~1 - x2) 

X fq,k3(~3' h + ~3 + X3 - q + k3' 

~2 + ~3 - x3 - q + k 3), (2.24) 

in which the sum is now over all nonnegative integers 
(k) = (k 1 k 2k3) which sum to q. Observe that we lose 
"obvious symmetries" in making this reduction. 
These symmetries are, of course, contained in the 
equalities of the forms obtained by reducing Eq. 
(2.20) in the three possible ways. 

Particularizing the result, Eq. (2. 24), to the case xl = 
~3' using the property 

f q ,k
1 
(~1> ~2 + ~3' 0) = <\1,0 q! (:1) , 

and relation (2. 23b), we obtain 

G~(~; ~3'x, - ~3 - x) = (- l)q(q !)2 (~1) 
X f2q,q(~2 + ~3 + x, ~2 + ~3' ~1 - x) 

= Gq(~; ~3'x, - ~3 - x). (2.25) 

From Lemma 7 and Eqs. (2.22) and (2.25), we have 
proved: 

Lemma 8: G~(~ ;x) obeys the result given by 
Lemma 4, namely, when one of the nine entries in the 
3 x 3 array 

~1 ~3-x1 

~2 h - x 2 

~3 ~2-x3 
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is zero, G~ assumes the form given in Lemma 4. 

Lemmas 7 and 8 indicate, but do not prove, that G 
and G ~are identical. Indeed, we have not yet estab
lished the full symmetry of Proposition 1 for G~. The 
essential lemma which is required to accomplish 
this fully is the following. 

Lemma 9: G~(~; x) has the value zero on the set 
Z given by Eq. (2. 9). 

Proof: In consequence of the symmetries given 
by Lemma 7, it is sufficient to prove that G ~ (~ ; x) 
obeys Lemma 6. Consider the factors 

(2.26) 

arising under the summation in Eq. (2.24). 

It follows that for nonnegative integers ~3 - X 1 and 
h - x 2 satisfying (~3 - xl) + (h - x 2) :s q - 1, we 
also have that - h - ~ 3 - X 3 + q - 1 = - (~1 - X 2) 
- (~3 - xl) + q - 1 is a nonnegative integer less 
than or equal to q - 1. Hence, at least one of the fac
tors in (2.26) vanishes unless k1 5 ~3 - xl' k2 5 
~1 -x2,and k3 5- h - ~3 -X3 + q -1. But this 
implies k1 + k2 + k3 :s q - 1, which violates k1 + k2 
+ k3 = q in the summation in Eq. (2.24). Thus, in the 
form (2. 24), G~(~ ;x) vanishes termwise, and Lemma 
9 is proved. 

We are now able to state a principal result: 

Proposition 4: The polynomials Gq(~ ;x) and 
G ~ (~; x) are identically equal. 

Proof: Using Lemma 9 and Proposition 3, we 
must have 

Setting xl = ~3 and using Eq. (2. 25), we find am = 1. 

Corollary: G~(~ ;x) obeys Proposition 1. 

USing only the symmetries of the polynomial G q(~ ; x) 
and its zeroes, we have been able to demonstrate that 
the solution to the recursion relations (2.2) is uni
quely given by G~(~ ;x). 

We still have made no use of Lemma 5. The signifi
cance of this lemma will become clear in the deter
mination of the null space of the Wigner operator 
(r s)' We now turn to the general discussion of the 
null spaces of the U(3) Wigner operators. 

3. NULL SPACES OF THE U(3) WIGNER 
OPERATORS 

A careful development of the concept of the null 
space of a Wigner operator is essential to the pre
sent work since one of our goals is to understand 
fully the vanishings of a Wigner coefficient. Before 
entering into this diSCUSSion, we require detailed 
knowledge of two numbers: the multiplicity ~ of a 
prescribed ~ pattern belonging to a set of irrep 
labels [M] == [M13M23M33] and the intertwining 
number d which is the number of occurrences of an 
irrep [m'] in the direct product [M] 1)9 [m]. 

A. The multiplicity of a 8. pattern 

We first consider the determination of the number 
m. 6 The b. pattern of the U(3) Wigner operator speci
fied by the operator pattern 

(3. 1) 

is by definition the triplet of integers [b.] = 
[b. 1 b. 2b.3 ], where 

b.1 = r ll , b.2 = r 12 + r 22 - r ll , 

b.3 = M 13 + M 23 + M33 - r 12 - r 22 , 
(3.2) 

Thus, for a given operator pattern, one simply reads 
off the corresponding b. pattern. Letting r 12' r 22' 
and r 11 run over the set of all integers which satisfy 
the "betweenness" conditions (the irrep labels [M] 
being specified), we then obtain the set of b. patterns 
belonging to irrep [M]. Clearly, those operator pat
terns having the same value of r 12 + r 22 correspond 
to the same b. pattern. 

The inverse problem is: (a) Determine when a speci
fied triplet of numbers [b.1b. 2 b.3 ] is the b. pattern be
longing to irrep [M], and (b) determine which operator 
patterns having irrep labels [M] correspond to this 
b. pattern. 

The solution to part (a) of the inverse problem is 
easily given: The necessary and sufficient conditions 
that [b. 1 b. 2 b.3 ] be the b. pattern belonging to irrep [M] 
are: b.1 + b.2 + b.3 = M 13 + M 23 + M33 and M 13 2: 

b. i 2: M33 for each i == 1,2,3. 

The solution to part (b) of the inverse problem can be 
solved by direct enumeration. Thus, if [b.] is a speci
fied b. pattern belonging to [M], then the set of opera
tor patterns (3. 1) which corresponds to this b. pattern 
is obtained by setting r 11 == b.1 and enumerating all 
values of r 12 and r 22 such that r 12 + r 22 == b.1 + 
b.2 , and such that the betweenness conditions are not 
violated, 

The counting problem described above gives rise to 
eight distinct cases corresponding to the eight pos
sible ways of distributing the three integers b. 1 , b.2 , 
b.3 into the two closed (diSjoint) intervals Sl == 
~23,M13] and S2 == [M 33 ,M23 -1), where S2 is de
fined to be empty for M 23 == M 33' The eight solutions 
to the eight counting problems are conveniently given 
by determining the largest and smallest values of 
r 12 which can occur for the specified b. pattern. 
Thus, if we define 

r12(b.1b.2b.3) == r12(max),r12(b.1b.2b.3) == r 12 (min), 

(3.3) 
then, the multiplicity * can be verified directly to be 

~ = rb(b.1b.2~3) - Q2(b.1 b.2b.3 ) + 1. (3.4) 

The eight possible cases are given in Table I below. 

B. The intertwining number 

The determination of the intertwining number [J may 
be accomplished by various methods (e.g., Little-
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TABLE I. The multiplicity of a A pattern. [M13M23M33J denotes 
an arbitrary set of irrep labels. [A,A2A3] denotes any specified 
triplet of integers satisfying At + A2 + A3 = M13 + M23 + M33 and 
either Ai E 51 = [M23 ,MI3 ] or Ai c 52 = [M33 ,M23 -1]. Depend
ing on the eight possible distributions of AI' A2 , A3 into the two in
tervals 51 and 52 given in columns 1- 3. there is defined a set of 
operator patterns having irrep labels [M13M23M33] and A pattern 
r A, A2A31· The values of r 12 which occur in these operator patterns 
range from the largest value given in column 4 to the smallest value 
given in column 5. The total number of operator patterns having 
irrep labels [M'3M23M331 and the specified A pattern is the multi
plicity ::m given in column 6. 

Al A2 A3 rr2(A I A2A 3) rJ2(A , A2A 3) ::m 

5, 5, 8 , Al + A2 - M33 A, + A2 -M23 M23 -M33 + 1 

52 S 2 S 2 M'3 M23 M ,3 -M23 + 1 

5, 52 52 M'3 A, M'3 - Al + 1 

52 S 1 5, A, + A2 -M33 A2 A, - M33 + 1 

5 2 51 52 M'3 .6.2 M'3 - A2 + 1 

5, 52 S 1 A, + A2 - M33 A, A2 - M33 + 1 

52 52 51 Ai + A2 -M33 M23 M'3 - A3 + 1 

5, 5, 52 M'3 Al + L!.2 -M23 A3 - M33 + 1 

wood's tableau methods 7 ), but we choose to use the 
method of reducing direct products described in de
tail in Refs. 8 and 9, since the technique is again just 
a counting problem on Gel'fand patterns. The count
ing is, however, highly redundant. Nonetheless, a 
careful analysis of the procedure allows one to de
duce the following much simpler statement: the in
tertwining number If belonging to our triple mMm', 
i.e., the multiplicity of [m] + [~] in [M] @ [m], where 
[~] is a ~ pattern belonging to [M] is given by 

If = 'JTt l23 + 'JTt 231 + 'JTt 312 - 'JTt 213 - 'JTt 132 - 'JTt 321 , 
(3. 5) 

where 'JTt ijk is the multiplicity of the ~ pattern 

[Pi3 + ~i,Pj3 + ~j,Pk3 + ~k] - [P13P23P33] (3.6) 

belonging to [M]. 

In the ~ pattern (3.6), the Pi3 are the partial hooks 
defined by Pi3 = m i3 + 3 - i, i = 1,2,3; furthermore, 
'JTt ik is defined fo be zero whenever the triplet of 
int~gers (3. 6)fails to be a ~ pattern belonging to [M]. 

Equation (3. 5) is a rather remarkable formula in that 
it expresses the intertwining number If directly in 
terms of the multiplicity of six ~ patterns belonging 
to the same irrep labels [M],lo Observe that 'JTt123 
is just 'JTt of Table I; but the remaining 'JTt ijk depend 
on the labe Is [m]. 

Equation (3. 5) is a very useful form for determining 
the components [m'] which appear in the reduction of 
[M] @ [m] for specific numerical assignments of [M] 
and [m J. It may also be used to determine complete
ly the intertwining number If as a function If ([ M], [m ], 
[~]) of [M], [m] and [~]. The procedure for accom
plishing this is described in the following paragraphs. 

Consider the determination of 'JTt 213 . This number is 
the multiplicity of [~2 - x 12 , ~1 + x 12 , ~3] in [M]; 
equivalently, it is the multiplicity of [~1 + x 12 , ~2 -
x 12 , ~3] in [M], where [~1~2~3] is a specified ~pat
tern of [M] having the multiplicity 

'JTt 1 2 3 = 'JTt (3.7) 
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(line 1 of Table I). Then we can have either (~1 + 
x12' ~2 - x 12 , ~3) E (S1S 1S 1) or (~1 + xl2, ~2 - x 12 , 
~3) E (S1 S 2S 1)' Referring to Table I again, we find 

'JTt 213 

('JTt 123 for x~2 ::s x l2 ::s (31 - ~1' 

) (a1 - ~1 + 1) -X12 

) for (31 - ~1 < x 12 ::s a 1 - ~1' 
{ 0 for x l2 > a 1 - ~1' (3.8) 

where for brevity the following notations have been 
introduced: 

a 1 = r12(~1~2~3)' (31= q2(~1~2~3)' 

x~2 = max(l, ~2 - ~1 + 1). (3.9) 

We next progress through Table I, considering for 
each distribution of (~1~2~3) into S1 and S2,all poss
ible distributions of (~1 + x 12' ~2 - X 12' ~3) into S 1 
and S2' (Certain cases violate the lexical conditions 
xl2 2: X~2 and may be discarded.) The result is: 
Equation (3.8) obtains in each instance, i.e., when the 
restrictions on x 12 are expressed in terms of the 
numbers a 1 and (31 (the numbers appearing in Table 
I), then 'JTt 213 assumes the single form for any distri
bution of (~1 ~2 ~3) into S 1 and S 2' 

Recognizing that 'JTt13~ is the multiplicity of [~2 + 
x 23 ' 6.3 - x 23 ' ~d in LM], we obtain the following 
equation for 'JTt 132 from Eq. (3. 8) by letting [~1~26.3] 
-7 [~2~36.1] andx12 -7 x 23 : 

'JTt 132 

_ (012-~2+1)-X23 

1
'JTt123 for xg3 ::s x 23 ::s (32 - ~2' 

- for(32-~2<x23::sa2-~2' 

o for x 23 > a 2 - ~2' (3.10) 

where 

Similarly, we obtain 

'JTt321 

_ (a 3 - ~1 + 1) -x13 

(3. 11) 

1

'JTt 123 for x~3 ::s x13 ::s (33 - ~1' 

for (33 - ~1 < x 13 ::s a 3 - ~1' 

o for X13 > a 3 - ~1' (3.12) 

where 

a 3 - q2(~1~3~2)' (33 = r12(~1~3~2)' 

x~3 = x~2 + xg3 = max(2, ~3 - ~1 + 2). (3.13) 

One should be very careful to note that while certain 
permutations on [~1 ~2~3] have been utilized in ob
taining Eqs. (3. 10) and (3. 12), all three sets of formu
las, Eqs. (3. 8), (3. 10) and (3. 12), refer to a common 
specified [6.] = [~1~2~3). In forming the sum -'JTt 213 
- 'JTt132 - 'JTt 321 , for example, there are eight distinct 
results corresponding to the eight distributions of 
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[A1A2A3 J into Sl and S2' The most direct way to form 
these sums would be to write out two more tables 
from Table I (one for [A1A2A3J ~ [A2A3A11 and one 
for [A1A2A3 J -7 [A1A3A2J) in which one then re
arranges the first three columns to the order AI' A 2 , 
A3 followed by a rearrangement of rows of the full 
table such that the first three columns of all three 
tables agree. The rows of columns four and five of 
the three tables then list, respectively, the values 
a1{31> a 2{32, and a 3 {33 which are relevant to forming 
the sum - ~213 - ~132 - ~321 for each specified 
[A;lA2A3 J. (The last column is, of course, the same in 
all three tables, Le., ~123 == ~ = a 1 - {31 + 1 == a 2 
- {32 + 1 = a 3 - (33 + 1). Actually, it is not necessary 
to form directly the aforementioned sum; but the fact 
that one must refer the various ~ijk to a common 
[A] = [A1A2A3] before combining must be carefully 
observed. 

The determination of ~231 proceeds along similar 
lines: ~231 is the multiplicity of [AI + x13' A 2 -
Xq' A3 - x:p] in [M]. By examining all distri?utio.ns 
of lA1 A2 A3 j into Sl and S2 and all correspondlng dls
tributions of [AI + x13' A2 - x 12 , A3 - x 23 ] into Sl 
and S 2 which do not violate the lexical conditions 
X12? x~2,x23 ? X~3,X13 ? X~3' we have been able to 
derive the required explicit formulas. In order to 
give a concise description of the results, let us refer 
to the following restrictions on x 12 ,x23 ' and xl3 as 
conditions I and IT, respectively. 

The following restrictions hold simultaneously: 

x23 S x13 S (0'1 - A 1 ) + ({32 - A 2 ), 

X~2 S X 12 sal - A1 , 

xg 3 :$ X 23 :$ 0'2 - A 2 · 

At least One of the following restrictions holds: 

Xu> 0'1 - AI' X 23 > a 2 - A 2 , 

X13> (0'1 - AI) + ({32 - A 2 )· 

Then 

(1) 

(II) 

{
~32l for A2 E S2 

~231 = 
o for A2 E Sl and conditions IT. (3. 14) 

~231 = - ~123 + ~213 + ~132 for A2 E Sl and 

conditions I. (3. 15) 

A similar procedure yields 

{
~32l for A2 E S1> 

~3l2 = 
o for A2 E S2 and conditions IT, 

(3. 16) 

~312 = - ~123 + ml213 + ~132 for A2 E S2 and 

conditions I. (3. 17) 

Equations (3. 15) and (3. 17) can be replaced by the 
single relation 

~123 + ml 231 + ~3l2 = *213 + ~132 + *321 

for conditions I, (3. 18) 

since for A2 E Sl it reduces to Eq. (3. 15), and for 
A2 E S2 it reduces to Eq. (3. 17). 

The five relations, Eqs. (3.8), (3. 10), (3. 14), (3. 16), 
and (3.18), yield the complete determination of the 
intertwining number 11 of Eq. (3. 5). (The explicit 
form of ~32l given by Eq. (3. 12) never enters into 
the calculation of l1-it is always canceled by the 
ml321 piece of *231 or ~312') For example, consi
der x12 > 0'1 - Al and x 23 > 0'2 - A 2 • Then ml213 

= 0, ~132 = 0; ml 231 = 0 for A2 E Sl;ml 231 = 
ml321 for A2 E S2;ml3l2 = ~32l for A2 E Sl;ml 312 
= 0 for A2 E S2' Thus, 

11 = ml123 + ml312 - ~32l = ml123 for A2 E Sl' 

11 = ~123 + ~231 - ~321 = ~123 for A2 E S2' 

that is, 11 = ~123' Continuing in this manner, we 
obtain the following explicit set of values of the 
intertwining number 11: 

11 = ml123 - [(0'1 - Al + 1) - x 12 ) 

for (31 - Al < xl2 :$ 0'1 - A 1 , X 23 > 0'2 - A 2 ; 

(3. 19b) 

11 = ml123 - [(a 2 - A2 + 1) - x 23 J 

for x12 > a l - AI' (32 - A2 < X 23 S 0'2 - A 2 ; 
(3.19c) 

11 = ml123 - [(0'1 - Al + 1) + (0'2 - A2 + 1) - X13J 

for x12 :$ al - Au x23 S 0'2 - A 2 , 

X 13 ? ({31 - Al + 1) 

+ (0'2 - A2 + 1) 

= (a 1 - Al + 1) + ({32 - A2 + 1); 

11 = 0 if at least one of the following conditions 
obtains: 

(a) x 12 :$ {31 - AI' (b) x 23 S {32 - A 2 , 

(c) X13:$ (13 1 - Al + 1) + (0'2 - A 2 ) 

(3. 19d) 

= (0'1 - AI) + (13 2 - A2 + 1). (3. 1ge) 

All 11 = 0 cases are included in the last equation (for 
lexical labels [m) and [m) + [A D. 
In obtaining the last two results above, one must take 
careful note of the implications of the conditions: 
For example,x12 :$ a 1 - A1 , x 23 S 0'2 - A 2 , X 13 ~ 

(0'1 - Al + 1) + ({32 - A2 + 1) imply, in fact, that 
{31 - Al < x 12 sal - AI' 132 - A2 < X 23 :$ 0'2 - A2 , 
X13? (a l - Al + 1) + (13 2 - A2 + 1). The expression 
(3. 19d) given for 11 then obtains upon combining Eqs. 
(3.8), (3. 10), (3. 14), (3. 16), and (3. 18). Note that the 
same result would obtain for x13 = (a l - AI) + 
({32 - A2 + 1), but this gives 11 = 0, and this zero has 
been included in the last equation. 

To demonstrate that the 11 := 0 equation is correct, 
one must show that these zeroes are precisely the 
ones which obtain from Eqs. (3. 8), (3. 10), (3. 14), 
(3. 16), and (3. 18). All possible nonzero values of !J 
(for lexical labels [m] and [m] + [A]) are already 
given by the first four relations of Eqs. (3. 19). This 
implies that we can only get the value zero for !J (for 
lexical labels) if at least one of the conditions x 12 S 

(31 - AI' X 23 S {32 - A 2 , X 13 S (a 1 - AI) + ({32-
A2 + 1) obtains (since all other possibilities are con-
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tained in the first four relations). From Eqs. (3. 8) 
and (3.10), respectively, we obtain If '= 0 for either 
xl2 :s {31 - A1 , x 23 > 0'2 - A2 or Xl2 > 0'1 - A1 , 
x23 :s {32 - A2. Furthermore, all other possible 
zeroes are now subsumed under the single condition 
x13 :s (0'1 - A1 ) + ({32 - A? + 1). We have already 
noted that If = 0 for xl3 = ~0'1 - A1) + ({32 - A2 + 1). 
For x13 :$ (0'1 - A1) + ({32 - A2) = ({31 - A1 ) + 
(0'2 - A2 ), we have the following possibilities: x 12 > 
0'1 - Au x 23 < {32 - A2 ; x12 < {31 - A1 , X 23 > 0'2 
- A2 ; xl2 :s 0'1 - A1 , x 23 :s 0'2 - A2 . But each of 
these possibilities yields If = O. The conclusion is 
If = 0 if and only if at least one of the conditions 
stated in Eq. (3. 1ge) holds. 

We need to note one final property of If before Eqs. 
(3. 19) are complete: If any condition on the x ij for a 
particular branch of If fails to be satisfied in conse
quence of imposing the lexical conditions x ij ~ xg, 
then If has value zero on that branch. 

C. The intertwining number-null space diagram 

The derivation of the algebraic expressions (3.19) 
for the intertwining number has been quite detailed 
and intricate. It is therefore quite satisfying to 
observe that the results expressed by Eqs. (3. 19) 
assume a very elegant form when represented geo
metrically in the Mobius plane: Each point in the 
plane having integral coordinates 

(3.20) 

has associated with it an intertwining number. The 
three points 

FIG.1. The intertwining number-null space diagram. The inter
twining number iI is defined at each lattice point (points having inte
gral coordinates) of the Mobius plane. At each lattice point in the 
cross-hatched region I, including the bent solid line, the value of iI 
is ~; at each lattice point in the shaded region II, including the bent 
solid line, the value of iI is zero; at each lattice point in the region 
III between the two bent solid lines, the value of iI is 1, 2, ... , ~ - 1, 
its value being k at the lattice points on the bent dash-dot line 
designated by iI = k. 
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P 1 = (0'2 - A2 + 1, - 0'1 - 0'2 + A1 + A2 - 2, 

0!1 - Al + 1), 

P 2 = (0'2 - A2 + 1, - 0!2 - {31 + A1 + A2 - 1, 

(31- Al)' 

P 3 '= ({32 - A2, - O! 1 - (32 + A1 + A2 - 1, 

0'1 - A1 + 1) (3. 21) 

define the vertices of an equilateral triangle (se? 
Fig. I), This triangle defines a partitioning of the 
plane into three disjoint sets: 

I. The set of lattice pOints on the solid line de
signated by If '= mL in Fig. 1 and all lattice 
points in the pie-shaped region for which the 
line If '= mL is the boundary (the cross
hatched region). 

II. The set of lattice points on the solid line 
designated by If = 0 in Fig, 1 and all lattice 
points in the shaded region. 

III. The set of lattice points lying between the 
solid lines If = 0 and If = mL of Fig. 1. 

On the set I, the intertwining number has value mL; 
on the set II, it has value zero; and on the set III, it 
has a value which ranges from 1 to mL - 1, its value 
being k(l :S k :S mL - 1) on those lattice pOints joined 
by the dash-dot line designated by If = k in Fig. 1. 

We propose to call this diagram the Intertwining 
Number-Null Space Diagram. This dual nature of the 
diagram is discussed in detail subsequently. 

The Intertwining Number-Null Space Diagram assigns 
an intertwining number to each point of the Mobius 
plane. However, only a portion of the diagram corres
ponds to the actual problem of determining the num
ber of times [m] + [A] occurs in the reduction of 
[M] ® [m], since, by definition, If is zero whenever 
[m] + [A] is nonlexical, Le., fails to satisfy m13 + A1 
~ m23 + A2 ~ m33 + A3' The lexical conditions are 

(3.22) 

where the numbers xg are defined by Eqs. (3.9), 
(3.11), and (3.13), respectively. We call the point 

(3.23) 

the lexical point of the diagram. The lexical region 
of the diagram is then the set of lattice points which 
satisfy the lexical conditions (3.22). 

The lexical point Po can be one of six possible points 
depending on [A]: It is (1, - 2,1) for A1 ~ A2 ~ Ll3; 

(1, - A2 + A1 - 2, Ll2 - A1 + 1) for A2 ~ A3 ~ Ll 1 ; 

(A3 ---' A2 + 1, - Ll3 + A2 - 2,1) for A3 ~ A1 ~ A2; 
(1, - Ll2 + Al - 2, A2 - Al + 1) for A2 ~ Al ~ Ll3; 
(A3 - A2 + 1, - A3 + A2 - 2,1) for Lll ~ Ll3 ~ Ll 2 ; 

or (A3 - A2 + 1, A1 - A3 - 2, A2 - A1 + 1) for 
Ll3 ~ Ll2 ~ AI' 

For example, the lexical point for the Intertwining 
Number-Null Space Diagram for [m] + [q q q] con
tained in [2q q 0] ® [m] is (1, - 2,1). The points 
PI' P 2 , P 3 become, respectively, 

PI '= (q + 1, - 2q - 2, q + 1), 

P 2 ,= (q + 1, -q -1,0), 

P 3 = (0, - q - 1, q + 1). 
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TABLE II. Coordinate points of the intertwining number-null space 
diagram. 

Al A2 A3 [11 - Al + 1 ill -- Al [12 - A2 + 1 il2 - A2 
-.-~--.----------~~-.-

51 5 1 5 I A2 - M33 + 1 A2 - M 23 A 3 - M33 + 1 A3 - }\I23 

S 2 5 2 S 2 M 13 - Al + 1 ,\123 - A1 MI3 - A2 + 1 M 23 - A2 

S 1 S 2 52 M 13 -A l +1 0 A3 - M33 + 1 M 23 - A2 

5 2 S, 5 1 A2 - M33 + 1 A2 - Al M 13 - A2 + 1 A3 - J1--123 

52 5 I 5 2 M 13 - A1 + 1 A2 - Al M 13 - A2 + 1 0 

51 52 Sl A2 - M33 + 1 0 A3 - J-133 + 1 A3 - A2 

S2 52 5 1 A2 - M33 + 1 M 23 - Al MI3 - A2 + 1 A3 - A2 

5 1 5 1 S 2 ;1--113 - A1 + 1 A2 - ,1.123 A3 - M33 + 1 0 

Thus, in the lexical region of the diagram, we have 
[J = 0 whenever - q - 1 :s x 2 :s - 2. 

Since the four numbers Ql1 - ~l + 1, {31 - ~11 
Ql2 - ~2 + 1, and {32 - ~2 playa crucial role in the In
tertwining Number-Null Space Diagram, it is con
venient to give the explicit tabulation of them in 
Table II (these results are read off directly from 
Table I). 

D. Determination of the null spaces from the 
properties of the intertwining number 

Let us now discuss the dual nature of the Intertwining 
Number-Null Space Diagram, Le., we wish to justify 
the appellation "null space." 

Consider the set of:m Wigner operators of irrep 
labels [M] which belong to the multiplicity set having 
a prescribed ~ pattern [~]. The operators in this set 
are enumerated by operator patterns of the type (3.1). 
Let us denote these :m operator patterns by (r 1)' 
(r 2)' ... , (r ~), making, however, no specific assign
ment of the (rk ) to the patterns. Thus, the set of 
Wigner operators under consideration is 

(3. 24) 

More generally, we do not even consider the (rk ) to 
be operator patterns, but rather only symbols which 
enumerate a set of orthogonal unit tensor operators, 
each of which effects the mapping [m] --') [m] + [~] of 
a generic irrep space [m]. 

The coefficients 

(3.25) 

are then the coupling coefficients such that the vec
tors defined by (cf. Ref. 9) 

(3.26) 

have the following properties: For a specified k, 
1 :s k:s :m, either the coupled vectors are art hornormal 
in the labels (m'), in which case the vectors are a basis 
of a carrier space of irrep [m] + [A] of U(3),or each 
vector corresponding to any Gel'fand pattern (m') is 
the zero vector. Furthermore, the carrier spaces 
corresponding to distinct values of k are perpendicu
lar. 

Consider next the implications of the Intertwining 
Number-Null Space Diagram. If the labels [m] belong 
to the region R of the Mobius plane11 for which [J = 
:m, then Eq. (3. 26) must provide us with precisely:m 
perpendicular carrier spaces of irrep [m] + [~), L€., 
one for each k. 

This implies that 

k=I,2, ... ,:m,[m]ER, (3.27) 

for all (M), (m). This is just the statement that there 
exists :m Wigner operators. 8 But now consider the 
set L1 of irrep labels {[m]} such that (x 23 ,x31 ,x12 ) 

is a point on the line for which [J = :m - 1. Then pre
cisely one Wigner operator, call it (r 1), must have 
the property 

~ ___________ XI 

FIG.2. The null space of the U(3) Wigner operator (r.). Lattice 
points on the bent solid line If = ~ - k and exterior to the shaded 
region define the set of irrep labels {[mll which belong to the null 
space!Jl.. of the Wigner operator deSignated by (r.). The exact pOSi
tioning of the solid line is determined from Fig. 1. 
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(3.28) 

for all (M) and (m), for otherwise, we would obtains ~ 
perpendicular carrier spaces of irrep [m] + [D.], and 
only ~ - 1 such spaces exist. Next, consider the set 
L2 of irrep labels {[ m]} such that (x 23' X 31' X 12) is a 
point on the line for which ff = ~- 2. Then precise
ly two Wigner operators must annihilate all irrep 
spaces having [m] E L 2 • These can only be the opera
tor designated by (r l) and one more, call it (r 2): 

(3.29) 

for all (M) and (m). We continue in this manner, 
designating by (r 3) the new Wigner operator which 
must annihilate those irrep space [m] E L 3 , where 
L3 is the set of labels {[m]} such that (x23,x3l,xl2) 
is a point on the line for which ff = ~ - 3, Le., 

(3.30) 

The general conclusion is: Let 

(3.31 ) 

denote the null space of the Wigner operator designa
ted by (r k) in the above enumeration. Then the 
Mobius plane of the Intertwining Number-Null Space 
Diagram is separated into two regions by the line on 
which ff = ~ - k, as shown in Fig. 2. The nesting 
property of these null space is obvious: 

(3. 32) 

4. PROOF THAT THE NULL SPACE '2n:(rs) IS 
MAXIMAL 

Sections 2 and 3 have been developed quite indepen
dently of one another. The aim of this section is to 
demonstrate precisely the elegant manner in which 

J. Math. Phys., Vol. 13, No. 12, December 1972 

the zeroes of the denominator function, Eq. (1. 2a), of 
Sec. 1 fit into the more general scheme of null spaces 
developed in Sec. 3. 

This necessary meshing of structures is a conse
quence of the next proposition. (Throughout this dis
CUSSion, we impose the lexical restrictions Xl = x 23 
:S 1, x2 = X3l :S - 2, x3 = xl2 2':: 1, unless otherwise 
noted. 

Proposition 5: After all linear factors in x 23 ' 
x3l ,xl 2 are removed from Gq(D.;x), the polynomial 
which remains vanishes on the lattice points of the 
boundary and those interior to the equilateral tri
angle in the Mobius plane which has vertex points as 
follows: 

PI = (ll'2 - D.2, - ll'l - ll'2 + D.l + D. 2, ll'l - D. l ), 

P 2 = (ll'2 - D.2, - ll'2 - {3l + D.l + D.2- 1, (3l -D.l + 1), 

P3 = ({32 - D.2 + 1, -ll'l - (32 + D.l + D.2- 1, ll'l-D.l)· 
(4.1) 

The numbers appearing as the coordinates of the 
points PI. are obtained from those tabulated in Table 
II for [M] = [p q 0]. (The x 2 coordinates of P2 and 
P3 agree in consequence of the relation ll'l - ll'2 = 
{3l - (32') Observe that the triangle Pl P2 P3 of Fig. 1 
and the triangle Pi P2P3 share the common line P2P3, 
but the remaining two sides of Pi P2P3 lie one unit 
interior to P l P 2P3 • 

The proof of Proposition 5 is given by using (Lemma 
5) the fact that Gq(D.;x) contains the factor 

D.2 
" ....... . 

...... u. 
''0.. 

/ ...... 
I ine of zeroes 

FIG. 3. Zeroes of the polynomial G3 (352; x lX2 x 3 ), This polynomial 
vanishes at each of the six points (three large open Circles and three 
large solid circles) of each of the six equilateral triangles symmetri
cally placed about the center of symmetry at the point (- 3/2,1/2,1). 
This set of points is the set Z of Eq. (2. 9) (for ~l = 3, ~~ = 5, ~3 = 2). 
The linear factors of the polynomial are (x 3 + 3)(x3 - 5). Hence, the 
polynomial also vanishes on the lines x3 = - 3 and x3 = 5 (t.he dash
dot lines). Removing these linear factors from the polynomlal leaves 
a new polynomial which still vanishes at each of three points (the 
large solid circles) of each of six equilateral triangles which are 
still symmetrically placed about the center of symmetry. 
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(4.2) 

for 0 ~ a 3 ~ q. [In general, G q (~; x), for arbitrary ~, 
does not contain linear factors; but it may (by Lemma 
5) when ~ is particularized to a. This implies that 
G q (il; x) vanishes not only on the finite set of points 
Z of the six triangles of Sec. 2D, but also on infinite 
lines which intersect these triangles in a most inter
esting way (see Fig. 3).] Using the basic result (4.2), 
together with Lemma 1, we will verify Proposition 5 
for each of the eight cases listed in Table II. Since 
we are restricting our attention to lexical values of 
the variables (x1x2x3) = (x23x31x12), let us note that 
of the six general triangles on which G q(~; x) vani
shes, the one corresponding to the lexical region of 
the Intertwining Number-Null Space Diagram is the 
one which has vertices at the points (we now set 
~i = ai ) 

Q 1 = (a3 , - a 2 - a 3 , a 2 ), 

Q 2 = (a3 , - a 2 - a 3 + q - 1, a 2 - q + 1), (4.3) 

Q 3 = (a3 - q + 1, - a 2 - a 3 + q - 1, a 2 ). 

Our procedure is to prove Proposition 5 by verifying 
explicitly that when the zeroes of the linear factors 
of G q (a; x) are removed from the triangle defined by 
the points Q1 Q2Q3' we are left, in each of the eight 
possible cases, with the triangle defined by the points 
PiP 2P 3. We give the proof only for two cases, the 
remaining six cases being established in a similar 
manner. 

(1) (a1 a 2 a 3 ) E Sl. From Table II (for [M] = 
[p q 0]), we find a 1 - a 1 = a 2 , {31 - a 1 = a 2 - q, 
a 2 - a 2 = a 3 , and (3~ - a 2 = a 3 - q. There are no 
linear factors in G q la; x), and we see that the set of 
points (4.1) becomes the set of points (4.3). 

(2) (a1 a 2 a 3 ) E S2. From Table II, we find a 1 - a 1 
= p - a 1 , {31 - ill = q - ill' a 2 - a 2 = p - a 2 , and 
(32 - il2 = q - a 2 . The set of points (4.1) becomes 

Pi = (p - il2 , a 1 + a 2 - 2p,P - a 1 ), 

P 2 = (p - a 2 , a 1 + a 2 - p - q - 1, q - a 1 + 1), 

P 3 = (q- a 2 + 1,a1 + il 2 -p-q-l,P- a 1 )· 

The linear factors of Gq(a;x) are 
(4.4) 

X (~1 + X3) (~2 - X3) 
q - a3 q - a

3 
(4. 5) 

These factors yield a zero in the lexical region of the 
MBbius plane whenever at least one of the following 
conditions obtains: p - a 2 + 1 ~ Xl ~ a 3 , p - ill + 1 
~ - x 2 ~ a 3 , p - a 1 + 1 ~ x3 ~ a 2 . Now consider 
the intersection of all points satisfying at least one of 
these conditions with the triangle defined by the three 
points Q1Q2Q3 of Eq. (4.3). Removing this intersec
tion from the triangle Q1Q2Q3' we are left with pre
cisely the triangle defined by the points Pi P 2P 3 of 
Eq. (4.4). Hence, the polynomial factor of Gq{a;x) 
which remains after removing the factor (4. 5) vani
shes on the lattice points on the boundary of and in
terior to the triangle Pi P 2P 3 . 

In order to illustrate these remarkable properties of 
Gq(a;x), we have displayed in Fig. 3 six triangles 
(ignoring now the lexical conditions) of zeroes (six 
zeroes in each triangle) of the polynomial G3 (352; 
x1x 2x 3), i.e., for q = 3 and [a1 il2 a 3 J = [352]. In this 
case, G3 contains the linear factors (x3 + 3) (x 3 - 5) 
given by Eq. (4.2). Observe the remarkable geometri
cal positioning of these triangles: The line of zeroes 
x3 = 5 (the lower dot-dash line) includes three 
zeroes from each of the three lower triangles, while 
the line of zeroes x3 = - 3 (the upper dot-dash line) 
includes three zeroes from each of the three upper 
triangles. Furthermore, upon removing these linear 
factors from G3 , we are left with a polynomial which 
has zeroes on six equilateral triangle (still symme
trically pOSitioned) of three points each. [The lexical 
triangle which remains is, of course, just the one de
fined by the three vertex points of Proposition 5.] 

Proposition 5 will now be used to establish a princi
pal result of this paper. 

Let us recall that the null space :n (r s) of the Wigner 
operator labeled (r s) is the set of all irrep spaces 
with labels [m] such that 

n([a1a 2a 3])([m]) = o. 
[p q 0] 

(4.6) 

(This was demonstrated in I.) Since, by assumption, 
the labels [m] + [a] are lexical, we obtain from Eq. 
(1. 2a) the result 

J

AIl irrep spaces with labels [m13m23m33]:l 

:n(rs )= rl ( a i + Xij JIG (il;x) = 0 . 
i<j a i + a j + 1 q 

1 (4.7) 
It is our aim to show that :n(rs ) = :JL 1 , where:n1 is 
the maximal null space determined in Sec. 3. To 
establish this result, we first show that the function 
appearing in Eq. (4. 7) can be writt·en in the form 

3 ( ai + X ij )0 . _ La(a;x) n . Gq(a,x) - , 
iii ai + a j + 1 F a(a;x) 

a = 1,2, ... ,8, (4.8) 

where F ",(a; x) is that part of Gq(a;x) which remains 
after separating off the linear terms (Proposition 5). 
La(a; x) is a product of linear factors obtained by 
combining the linear factors of the left-hand side of 
Eq. (4.8) with those separated off from Gq (each fac
tor which separates off from G q is canceled by a 
corresponding factor in the numerator). The eight 
ways of writing this result correspond to the eight 
cases of Table II. While one can list explicitly the 
eight forms of L",(a;x) and F a(a;x), we will not do 
so; but note instead the essential properties of the 
right-hand side of Eq. (4. 8) which are obtained. 

(1) In each instance, the linear factor La(a;x) vani
shes for each set of labels [m] such that (x) belongs 
to the null space :nv and on no other lexical points. 

(2) In each instance, the denominator polynomial 
F ",(a; x) vanishes (Proposition 5) on each set of 
labels [m] (a finite number) such that (x) is a lattice 
point belonging to the triangle defined by the three 
pOints P'tP2P3 of Eq. (4. 1), and on no other lexical 
points. 
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(3) At each lexical point (x) where F ,,(~;x) vanishes, 
precisely two linear factors of the form x12 - a and 
x23 - b of L,,(~;x) vanish, and no linear factor in x13 
vanishes; in each case, L,,(~;x)/F,,(~;x) = O. 

The above properties are precisely the statement: 

Proposition 6: The null space Jr.(r s) is precisely 
the maximal null space Jr. 1 . 

[Let us also remark that the properties (1)- (3) des
cribed above also apply (See Fig. 3) to the nonlexical 
regions of the M5bius plane corresponding to the 
symmetries of G q.] 

We have now accomplished a major goal: The Wigner 
operator labeled (r s)' the construction of which was 
uniquely determined by the geometrical properties 
of the arrow-patterns (since the relevant Racah in
variant operators were uniquely determined), is the 
one in the multiplicity set determined by [~] which 
has the maximal null space. 

There still remains the problem of identifying the 

operator label (r s) with a definite numerical array, 
i.e., a definite operator pattern. We next describe· 
the method of making this identification. 

5. ASSIGNMENT OF THE OPERATOR PATTERN rs 
Our procedure for assigning a specific numerical 
array (operator pattern) to the Wigner operator 
designated by the symbol (r s) is based on certain 
limit properties of the Racah functions and the pro
jective operators. 12 

Consider the U(3) Racah functions which effect the 
following upper operator pattern coupling: 

[[P :::) o~ ~ [[p - q • 0 o~ ::: ~q ; oJ 
(5. 1) 

These Racah coefficients were determined explicitly 
in Ref. 1. We note again their explicit form: 

( 
x .. +~. )1/2 

(

(x .. + ~'! - ~'!)(~. + ~. + 1)! lJ l ) 
lJ l J l J ~. + ~. + 1 

3 l J . 

X i<7=1 -(~-i -+-A-; -+-1-)-! -(X-l-"j-+-~-i---~-'j-)-(-2-q-_-~-,-! _-~-,-, -+-1-)-!-(--X-;-j -+-q---~-j-' -) 

~~ + ~~ + 1 l J 2q - ~"- ~" + 1 

1 
(5. 2a) 

l J ! J 

where 

(a) [~,] -= [~(r')], [~,,] = [~(r")], 
(b) [A] is any arbitrarily selected ~ pattern belong

ing to [p q 0], 

(c) the ~ pattern of the label 

(
[p q 0]) 

(r s) 

is [A], 

(d) and the ~ patterns satisfy 

[~] = [~,] + [A"]. (5.2b) 

Note that since [A] is prescribed, condition (5. 2b) is a 
constraint on the patterns (r') and (r"). 

We next take the limit of Eq. (5. 2a) as m33 --7 - OCI • 

This is easily accomplished upon noting that 

k!(X: a) ~ Xk (5.3) 

for fixed a and k and for large positive x. 

The factor in Eq. (5. 2a) preceding [G q(A;X)]-1/2 
assumes the following form for sufficiently large 
- m33: 

( 

3 (A.)f )1/2 
q! n • . . [x + A" - A" ]1/2 

;01 (~j)!(q-Aj)! 12 1 2 
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X [(X 12 + A1)! (xl2 + A'{ - A2 -1)! 

(x l2 - A2 -1)!(x12 + ~1 - A2)! 

(xl2 - q + A'{ - 1) !J1/2 {:,,, 
X (-m33 ) 3. 

(x12 + q - A 2)! 
(5.4) 

To obtain the form of Gq(A;X) for large - m 33 , we 
use Eq. (2. 24) [for ~; = A; and Xi = xjk(i, j, k cyclic)]. 
For sufficiently large - m33 , we may write 

For A3 ;:;, q, the k3 = 0 term in this summation domi
nates the others, i.e., 
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Gq(~l ~2~3;X23' - X13,X12) ~ (q !)2 (:3) (~1 : ~2) 
X (- m 33 )2q (5.6a) 

for ~3 E S2 and sufficiently large - m3 3 ' 

for ~3 E S 1 and sufficiently large m33 • For 0 ~ 
~3 ~ q, the term in the summation (5. 5) having k3 == 
q - ~3 dominates the others, Le., 

Combining Eqs. (5.4) and (5.6), we obtain the follow
ing two explicit forms for the limit of the Racah co
efficient (5. 2a): 

q o])l([m] + [~]) 
(r") 

( 
(~1)!(~2)! (A1 + ~2)!(Al + A2)! 

::::: Oq,",~ (Al>!(~2)!(~V!(A2)! (AI + A2)! 

X (x12 + ~1 A2)(X12 + Al )!(X12 + A1- A2 -1)!(X12 - ~2 -1)!)1/2 

(X12 - A2 - 1)!(x12 + ~l - ~2)!(X12 + ~1l! 

q 0 ])l ([ m] + [A]) 
(r") 

( 
(P-q)!(P-Al)!(p-A2)!A3! 

= 00 '"'3 (p - q + ~3)! (A1) ! (A2) ! (q - A'1)! (q - A2) ! 

X (x12 + A1- ~:P(x12 + p - ~2)!(x12 + A'1- A2 -1)!(x12 + A'1- q _1)')1/2 

(x12 + A1 - A2)!(x12 + ~l - P l)!(x12 + q - A2)! 

(5.7a) 

(5.7b) 

for A3 E S2' 

We have given a detailed derivation of the limits, 
Eqs. (5. 7a) and (5. 7b), because of the considerable 
importance of these limits for inducing upper opera
tor patterns. 12 The Significance of the explicit forms 

(5. 7a) and (5. 7b) becomes apparent upon recognizing 
that the right-hand sides of these equations are 
square-bracket coefficients of definite labels. Name
ly, Eqs. (5. 7a) and (5. 7b) are expressions of the fol
lowing relations: 

11m 1 [ ~ (maxI ~ o~l ([mJ + [aJI "'33->-00 (P q 
0]) [p - q (:') 0] ([q 

q 

(r s) (r") 

~[(p ~ (maxi o~] (m13 + A,. m,. + A21 q , [p -q 0 O~([q q (5.8a) 

A1 + ~2 o (r') (r") 

~1 

for A3 E S1; 

(t (max) ~ 
OJ)l ([m] + [AJ) lim 1 OJ) [p - q (:') OJ ([q "'33..,.-00 ([P q q 

(r s) (r") 

~[( p 
(r (max) 

o [p - q 0 0] q q 

A, +A, - p) (r') ~~ q o~ (m13 + A,. mas + A,I (5.8b) 

(PI) 

A1 
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for A3 E S2' The proofs of Eqs. (5. 8a) and (5. 8b) are 
given by evaluating the U(3) square-bracket coeffici
ents directly from their definitions [Eqs. (2. 4b) and 
(2. 4c) of Ref. 1] in terms of the known reduced matrix 
elements of the [p - q 0 0] projective operators and 
the known U(2) Racah coefficients, thus showing dir
ectly the equality of these square-bracket coefficients 
to the right-hand sides of Eqs. (5. 7a) and (5. 7b), res
pectively. [For the relation of the notation for U(2) 
Racah coefficients used here to Racah's W notation, 
see Eq. (4. 12) of Ref. 9.] 

Properties (5. 8a) and (5. 8b) roay now be used directly 
to assign unambiguously the following operator pat
tern to (r s): 

o (p )= (5. 9a) 

lim 
m33 .... - oo 

(5.9b) 

for A3 E S2' 

Observe from Table I that these operator patterns 
correspond to 

(5. 10) 

that is, the" stretched" pattern (rs ) is the one having 
the difference r 12 - r 22 equal to the maximal value 
which is compatible with the prescribed A pattern. 2 

An alternative procedure for inducing the operator 
pattern assignment of (r s) uses the coupling law (5.1) 
and properties (5. 8a) and (5.8b). One can now prove 
directly the follOwing limit properties of the projec
tive functions. 

(a) A3 E Sl: 

= l5 A • A 'V 00 C1 + A2 
'->1 '->2"12 '')'22 [ (5.11a) 

1'22 

I'll 

where "ext" denotes an extended U(2) projective func
tion. 13 The Significance of the limit relations in this 
form is to demonstrate the manner in which an upper 
operator pattern is induced by limits from the set oj 
lower operator patterns, e.g., in Eq. (5. lla), the limit 
is zero unless 1'12 = Al + A 2 , 1'22 = 0, and these are 
the values which we assign to (r sh2 and (r s)22 in the 
upper operator pattern. (A detailed description of 
this procedure is given in Ref. 12.) 

6. CONCLUDING REMARKS 
In this paper, the properties of a class of unique, non
trivial U(3): U(2) projective functions have been deve
loped in considerable detail. The purpose of this ana
lysis has been to demonstrate, by giving explicit re
sults, the elegant structures which are implied by the 
canonical splitting of the multiplicities of the unit 
tensor operators in U(3). In particular, we have given 
explicitly a truly remarkable polynomial form 
G q (A; x), having precisely the properties required to 
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(5.11b) 

describe the intricate null space vanishings of the 
U(3) Wigner operator having maximal null space. 

Finally, let us emphasize again that the coupling co
efficients appearing in the left-hand side of Eq. (5.1) 
are completely known as are the U(3): U(2) projective 
operators [p - q 0 0] and [q q 0]. Thus, all U(3): 
U(2) projective operators for which the upper opera
tor pattern is stretched and the lower operator pat
tern is arbitrary have been completely determined. 
Using now the U(3): U(2) subgroup reduction law, we 
see that we have indeed constructed jor each multipli
city set the unique U(3) Wigner operator in the set 
having the maximal null space. 
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A necessary and sufficient condition for implementation of some local gauge transformations in a class of irreducible repre
sentations of the CAR algebra is proved. Some particular results on the unitary group of implementation are then given. Not 
all of the pure states induced by these representations are unitarily equivalent to "quasifree" states of the class we consider; 
it is shown that such a state is unitarily equivalent to a quasifree state if and only if a certain property (characterizing the 
"discrete" states) holds. 

I. PRELIMINARIES 

A. The fermion C*-algebra and some of its gauge 
transformations of second type 

Let (H,s) be a real separable Hilbert space. Consi
der the CAR algebra el =:0 el(H,s) built on (H,s),Le., 
the C*-algebra generated by the elements B(1J;), where 
B is a one-to-one linear map of H into a such that 

[B(1J;), B(rp)J+ = 2s(tJ;, rp)/ VtJ;, rp E H 

(I the identity element on a). 

Suppose A is a linear operator on H such that 

(i) dim(ker N is not odd (this is not a restriction). 

(ii) /A/ is diagonalizable (where A = Jo/A / in the 
polar decomposition). 

We choose a complex structure J of H such that 

lJ/ (ker A)i == Jo/ (ker A).t, 

J/ker A an arbitrary complex structure of ker A. 

We shall write 

where PH are the orthogonal projections on Hk and 
k 

H k a two-dimensional real subspace of H which is in-
variant by J and such that H = ®kEN H k • We remark 
that some A k are possibly not different. (From now 
we denote by ® the Hilbert sum and by EB the weak 
sum). A is the infinitesimal generator of a one-para
meter strongly continuous orthogonal group {T 6} 6E R 

on H. By Ref. 1 we can define an automorphism To of 
a with 

B. The problem 

We look for irreducible representations of a for 
which T e is implementable. 

This problem was approached by Dell'Antonio.2 We 
give here full proofs of the results announced by him 
and we generalize some of them. 

II. THE CLASS OF REPRESENTATIONS WE 
CONSIDER 

Let {tJ;t, IP~} be an orthonormal basis of Hk ; then 
Elk = - iBtlP} )B(IP;) verifies 

[Elk,B(rp)L = 0 Vcp E Hk , 

Elr = 1. 
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(II. 1) 

The center of elk == el(Hk,s) is reduced to the sca
lars, and therefore any bolution of (II. 1) is Elk or - Elk' 

Let 1Tk be an arbitrary irreducible representation of 
ak into JCk == C 2 • 

We construct the representation 1T' of a into JC = 
®kEN JCk from the following: V kEN, j == 1,2, 

1T'(B(tJ;~»=®k-l1T;(EjElj)® 1T k(B(IP{»® ®"" 
j 1 j k+l 

X Ij(Ij == I C2), Ej == ± 1. 

It is well known that each n == ®kEN nk , nk being a 
unitary vector of JCk , determines an incomplete ten-

sor product JCQ = ®k~~Q)JCk with e(n) the equiva
lence class of n for the relation n ~ n' iff 

L) l(nk lnk)-l/<+W. 
kEN 

It is not difficult to see that the JC Q are invariant 
subspaces of 1T' and that the restrictions of 1T' to those 
subspaces denoted by 7To are irreducible and there
fore 1T' is the direct sum of the set of the 1Til' 

Let 7T be the representation of el into JC defined by 

1T(B(tJ;Jk'»®lk-l1TI(ElI)® 1T k (B(tJ;{))C9 ®oo Ii' 
I I k+l 

j = 1,2, 
where 

1T I (Ell) = a 1, 
and 

(~ _ ~) is the matrix of a 1 in the canonical baSis of JC I , 

G ~) is the matrix of a t in the canonical basis of JC I , 

G - ~)iS the matrix of a r in the canonical basis of JC I . 

Accordingly we shall write 1T == ®:EN 1T k .3 It is clear 
that for each lEN, a unitary operator UI on JC Z 

exists such that Vx E ell' 7T Z (x) = UZ7T Z (x) Uf. If U = 
®IEN U 1 , we construct 

1T"(X) = U1T'(X) U*, "Ix E el; 

hence 

v = ® ZEN VZ with VI = a y if the number of k < l such 
that Ek = - 1 is odd and Vz = I z otherwise. 

2002 
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Clearly IT{x) = VlTf/{x)V*, Vx E a; hence IT'{x) = 
WlT(x)W*, Vx E a, where W is a unitary operator on 
X. 

Any irreducible subrepresentation 7To of 7T' is unitary 
equivalent to the subrepresentation lTw*!l of IT. There
fore we can restrict our attention to the study of the 
irreducible subrepresentations of 7T. 

Proposition: IT!l is unitarily equivalent to 1T!l' if 
and only if nand n' are weakly equivalent. 

Proof: Recall that n = ®kEN S1 k and W = ®kE)'\; n" 
are weakly equivalent iff 6 kEl'l I (I (n kin;,) I - I)! < + w. 

Suppose that nand Ware weakly equivalent. By Ref. 
4, one can find for each kEN, II k E JR such that 

(n;')kEN ~ (eivknk)kE:\' 

Let U = ®kEN eiuklk • Then un E X!l' and we have 

Conversely, if nand Ware not weakly equivalent, let 
us denote 

and 
W!l(X) == (n IlTn(x)n), x E a, 

w!l'(x)== (wllT!l'(x)W), 

Let Uk E £(X k) be an unitary operator such that 

and let 

~k-l ~oo 
U' == '6! I j Q9 Uk Q9 '6! I j , 

k jl jk+l 

Uk == IT-l(U k )· 

The proof will be continued in the same way as in 
Sec. I1IA2. 

III. THE THEOREM 

and x k 

A. Statement 
A one-particle evolution Te is implementable for the 
representation 7T!l if and only if the following condi
tion holds: 

(A) 6 X k (1 - x k ) inf(l, A1) < + W. 
kEN 

If this occurs, a strongly continuous one-parameter 
group of unitary operators (we shall call such groups 
SCOPUG) {We}eER, We E IT!l (a)" = £(Xn), exists 
such that 

Vx E a, VB E JR 1Tg(Te(X» = We7T!l(X)W_ e , 

B. Proof 
1. Sufficiency 
Suppose 

'6 x k (1 - x k ) inf(!, AV < + W. 
kE)'\; 

Let 

Uk,e = G ei~kfJ)' 
It is a unitary operator on X k • Ue = ®kEN Uk,S is a 
unitary operator on Je.5 Clearly 

i = 1,2, kEN; 

hence U e implements T e for the representation IT. 
Changing Uk,e into Vk,e =e'llk Uk •e , Ilk E JR, Ve = 
®kEN Vk,e implements Te' 

We choose Ilk such that 

arg(Vk,enk [n k ) = O. 

We get 

(Vk,enk[S1k)2 = [(Uk,e n k[nk )[2 

= 1- 4xk {1-xk ) sin2 (A k B/2); 

from the hypothesis 

6 X k (I-x",) sin2 {A k B/2) < + w; 
kEN 

hence 

I1kEN(Vk.enklS1k)2 converges and VeX!l C Je!l. We 
note now Ve its restriction to X!l. Hence 

It is important to remark that Ve has been calculated 
for each e E JR so that {V e } eE R is not a group in the 
~eneral case. By Ref. 6 there exists a SCOPUG 
iWe}eER in £(Xfl) such that 

VXEa,VeEJR, 

2. Necessity 
Condition (A) is equivalent to the both following con
ditions: 

(i) '6 x k (l-x k )<+w, 
k,IA kl '" 1 

(ii) 6 x k (l-xk )<+w. 
k,lAk 1:51 

Suppose condition (A) is false. Then either (0 or (ii) 
is false. The following two lemmas prove that in the 
both cases :3B E JR and 6 kE N x k (I - x k ) sin2{Ake/2) 
= + w. 

Lemma 2.1: Let (rk ) kEN' O:s r k :s 1, and let 
(A k ) kEN' Ak E JR, [Akl ?: 1. Then 

( 6 r k sin2 (A k B) <+00, VBEJR)= ~ rk<+W. 
kEN kEN 

Proof: In our case we have,for rk = 4xk (1-xk ), 

6 r k sin2(AkB) < + 00, "Ie E ilL 
kEN 

In the proof of the sufficient condition we saw that the 
convergence of this series implies the existence of an 
SCOPUG {We leE R , We E £(Je {) such that 

J. Math. Phys .• Vol. 13, No. 12, December 1972 



                                                                                                                                    

2004 J. F. GILLE AND J. MANueEAU 

Vx E a, V9 E R, 1To(Te(X» = We 1Tn(x)W;. 

Now we constructed a set of unitary operators 
{Ve}ee: R such that 

Vx E a, ve E R, 1To(Te(X» = Ve1T(}(X)V~. 
1T () being an irreducible representation, 

We = X(e)Ve; x: R 0.-7 C,l x(9)1=1; 

hence 

l(WeOlo)1 = Ix(e)ll(VeOIO)1 = l(VeoIO)1 
and 

l{weoI0)12 = n~ [1- 4xk{l-x~) sin2{~"e/2)]. 
k 

Now {We} 6E R is strongly continuous in 9; therefore 

e0.-7I{We O I0)12 =~~ [1-4xk(l-xk )sin2(A k e/2)]. 

is continuous VeE R. Let us call 

pee) = n~ / k (e). 
k 

We have P{O) = 1 and e 0.-7 pee) is continuous V9 E R, 

o ~ P(O) ~/k(O) ~ 1, Vk EN, VO E R, 

and 
Hl- /k(O)] ~ ILog/k(e)l, Vk E N, ve E JR, 

(Log is Neper logarithm) 
and 

LogP(e) = L)~ Log/k(O) for small 9's. 
k 

Let us call 

See) = 'L/.IO [1 - h(e)] < + 00 for P(O) ¢ OJ 
k 1 

i.e., in a neighborhood of 0 

is(e) ~ - LogP(e) for I e I ~ 00 < 1; 

moreover, 

is,. (e) = i L)~ [1 - / k(O)J ~ jS(e) ~ - Log pee). 
k 

Now,on [- 90 , + 00 ], e 0.-7 - LogP(9) is an integrable 
function, and S is measurable as a pointwise limit of 
measurable functions. Hence S is integrable on 
[- 00 , + eo]. We take now 9 E [- 00 , + 90 ], 
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(e) 

absolutely converges, since 

""n I r k 9
2 COS(Ak9) - 11 ",,11. 16 I I 

D --+rk =D gk(t) dt 
k 1 4 2Al k 1 0 

e 
~ i F(t)dt < + 00. o 

e 
with gk(9) = 1 [1 - /k(t)]dt o 
Obviously the sum of (B) and (e) shows that 

~B2 L)oo r
k 

< + 00 with B ¢ 0; 
k 1 

hence L)"" rk < + 00. 
k 1 • 

Lemma 2.2: If /: R 0.-7 R, /(0) = 0, / differenti
able at 0 and /'(0) = 1, Uk E R, (Uk) kEN bounded, 
r k 2: 0 Vk E N,then 

(31 E 'OR(O) and VO E I, ~~ r k [J(u k e)]2 

< + 00) ¢:::::> L)«:! rkul < + 00. 

" 1 

Proof: If J E 'OR(O) is such that x E J =:> 1[J(x)/x] 
-11 < t, 

h < lex) < lx, 

and IE 'OR(O) is such that VB E I, 9u" E J, Vk EN, 
then 

Now, we return to the proof of necessity. Let 9 E R 

such that L)"EN xk (1- Xk) sin2(A" e/2) = + 00. 

Let U ,,(e) = B(COS(A ,,9/2)1/1\ - sin(~ lIe /2)1/Ii) B{1/I\). 

m 

un,m(e) = n u,,(9). 
"=11. 

Wo(x) = (0 11T n (x)O), Vx E a (2.1) 

We have 

Vx E a(En.m,s), wo(x) 

= wn 0 T e( un •m (e)x u:, m (e». 

Since 

B{1/I)B(qJ)B(1/I) = B(2s(qJ, 1/1)1/1- qJ) = B{S",qJ), 

S'" the symmetry with regard to 1/1 (111/111 = 1). 
'A 6 

!~r ea:e qJr:t~:~: 6~:j~;:~~ntk A :~.= :e~~ k (:'1) 
" holds. 

Let us consider a,..m = ~: 6,,; we shall note (1.,,(H,s) 

(resp. ao (H, s» the C* -algebra (resp. the closed 
vector-subspace) of a(H,s),generated by products 
of even (resp. odd) number of B(1/I)'s. Let us denote 
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o 

= ®;; 1Tk (tensor product ":1 la Powers" 3), 
k 

It is not difficult to see that 

~:x + 6 1,n-1Y E ae(En,m's) $ 61,n-1aO(En,m's)~ 

X + Y E atE n ,m' S) is a C* -isomorphism and that 
wn,m(z) = (Un,ml1Tn,mg(z»Un,m)' Vz E ae(En.m,S) 

$ 6 1,n-1 ao(En,m's), 1Tn.m is an irreducible repre
sentation, and hence wn,m is a pure state. Lemma 
2.4 of Ref. 7 implies (ae (E n•m, s) $ 6 1•n-1 ao(En,m' s) 
is a C*-algebra8 ): 

II(wo - Wo 0 Te)lae(En,m's) $ 61,n-1ao(En.m,s)1I 

:::;: 2[1 - I wn (Un,m (e) !2]1/2 

Now 

== 2(1- lJ
n

m 
[1- 4xk(1- xk ) Sin2("-k8)/2)]YI2. 

E x k(l-xk ) sin2("-ke/2) = + ct:) 

kEN 

implies 
co 

n [1 - 4xk (1 - X k ) sin2("-ke/2)] = 0, 
i:::n 

Le., 
m 

lim n [1 - 4xk(1- x k ) sin2("-k8/2)] = O. 
m,OO i:::n 

Denote by a(En,s)C the commutant of a(En,s) in a. 
Then 

a(En,s)C = ae(E;, s) $ 6 1.n ao(E~, s),9 

ae(E~,s) $ 61,nao(E~,s):::> ~:1 [ae (E n+1•k ,s) 

$ 61,n-1aO(En+1.k,s)], 
Thus 

II(wo - Wo 0 Te)!a(En,s)CIl 

=II(wo - Wo 0 Te)!ae(E;,s) $ 61.n-1aO(E~,s)11 

~ lim II(wo - wn 0 Te)!ae(En+1.k's) 
k .co 

$ 6 1 •n - 1 ao(En+ 1•k , s)11 

== 2. 

Now En+1 :::> En and UkEN E k= EBkEN Hk, UkEN E k :::;: H. 

Hence, by Lemma 2.1 of Ref. 7, Wo and Wo 0 Te are 
not unitarily equivalent; therefore, no unitary Ue E 
£(XO) can exist such that, Vx E a, 

1T(l(Te(X» == UeTo(X)U~; 

T e is not implementable for the representation 'ITo' • 

IV. OTHER PROPOSITIONS AND REMARKS 

(1) Fix 8 E R; there exists a unitary operator Ue E 
£(Je0) such that 

if and only if 

E xk (1 - x k ) sin2("-ke/2) < + <Xl. 
kEN 

(IV. 1) 

Proof: If (IV. 1) is true, the existence of Ue is 
checked (see the beginning of Sec. III). 

If such a Ue exists,Ue = eiPVe, Ve is the operator 
constructed (Sec. IlIA) 

U eU == eip(Vk.eUk) k E Jeo, therefore (Vk,SUk) k ~ (Uk) k 

which implies EkEN l(Vk,Suklu k) -11 < + <Xl, 

Recall that arg (Vk.SUk IUk) :::;: 0; hence 

and 
(Vk.eUkIUk) == I(Vk.sUkIUk)! 

E x k(1-xk ) sin2("-k8/2) < + <Xl, 
kEN 

(2) Let 

f I there exists a unitary operator} 
:no == i8 E RUe E .c(XO) such that: V x E 91 

~ 1To(Te(X» == Ue1Tn(x}U:. 

:n Q is an additive subgroup of R. 

Proof: Let 81> 82 E :no. Then 

and 

E xk(1-xk ) sin2("-k8t/2) < + <Xl 
kEN 

Let us set r k = xk (l - xk ), cpi = "-k8t/2, cp~ = 
"-k 82/2; EkEN r k sin2(cp1 + cp~) converges, for 

M = E r k sin2(cpi) cos2(cp~) 
kEN 

• 

::;: E r k sin2cp1 < + <Xl. 
kEN 

Now 

::;: E r k Sin2cp~ < + 0Cl. 
kEN 

M + N + L = E r k sin2(cpi + cp~). 
kEN 

Obviously e E :nil and 8 E :no =:> - 8 E :no. 
(3) If E kEN x k(1-xk) < + ct:) we shall say that repre
sentation 1To is a discrete one. Sec.IIIB1 implies that 
all the monoparticular evolutions are implementable 
for every discrete representation. 

Statement: If 1T 11 is not a discrete representation 
(Le.,6kEN xk(l- xk) :::;: + <Xl) and if {"-k} kEN has nei
ther 0 nor infinite as accumulation points, then :n ° 
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= aZ.,a E R+ (Z the additive group of the relative 
integers). 

Proof: Except for a finite number of k's we have 

Ak E [a", bIt] U [a', b'] with a" < bIt < 0 < a' < b'. 

We can omit a finite number of k's without changing 
::nn which is determined by the convergence of some 
series. The convergence of which is not changed by 
the suppression of a finite number of terms. Let us 
build a dividing decomposition of those intervals. 

Let a~ = %a~-l = {~)na', I~ = [a~ = [a~,a~,d. A 
finite number of I~ overlaps [a', b']. 

Let [r~, s~] = [11/3a~, 1T/2a~+d which is a proper in
terval. 

If /l E I~ and e E [r~, s~], then /le E [1T/3, 1T/2]. In the 
same way let us write 

all - l a" (~)nalll" = [a" a" ] n - 4 n-l 4 n n' n+l' 

A finite number of I'~ overlaps [a", b"]. 

Let [r~,s~] [1T/2a~, 1T/3a'~+1] which is a proper in-
terval. 

If /lE IJ~ and e E [r'~,s~],then /le E [1T/3,1T/2]. Let 
us denote {lp}l:sp:sm and {(rp,spJ}l:spsm those in
tervals and let 

Lp ::;:: {k E N1Ak E Ip}. 

Then 

If kELp, then Ak E Ip' Ak e/2 E [11/3, 1T/2] as soon as 
e E [2rp, 2sp); hence sin2(Ake/2) E [t 1] and 

~ x k (1- x k ) sin2(A ke/2) ::;:: + co. 
kEN 

Thus not any Ue can exist for not any e E [rp,sp)' 

From that we conclude that ;}Ln ::;:: aZ for some 
a E IRp • 

(4.1) Definitions: As in Sec. IIIB2, we shall denote 
(io(H, s) the closed vector subspace of (i generated 
by products of odd number of B(l/I)'s. 

A state won (i will be called quasifree3 •10 •1 when 
wlao(H,s) 0, 

w(~~n B(CPi») ::;::" "~ " Eo n~ W(B{CPik)B(CPj k»' 
l '1<'2<-<'n k 

i k <j k 

Eo being the parity of the permutation a 

Accordingly with Sec. 4. 3 below we call Wn a dis
crete state 
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(4.2) Lemma: Wo is quasifree if and only if 
G'k{3k ::;:: 0, Vk EN. 

Proof: Suppose wn is quasifree. 

wo(B(l/IV)::;:: 2 Re(G'1{31~= 0 "} 

Wo (B(l/IV) ::;:: - 2 Im(G'1{31) ::;:: 0 

~ G'l{3l ::;:: 0 and 1G' 1 12 1{3112 = ± 1; 

hence 

Wo (B(l/I1» ::;:: ± 2 Re(G'k{3k) ::;:: O} 
_ ~ G'k{3k ::;:: O. 

Wo (B(l/I~» = 'f 2 Im(G'k{3k) ::;:: 0 

Conversely, suppose V kEN, G'k{3k = O. Let y ::;:: 
n~ Yk with Yk ::;:: B(l/I\)B(l/I=i) or Yk ::;:: B(l/I\> or Yk ::;:: 
k 
B(l/I~); if Y E ao (H, s), at least there exists a ko EN 
such that Yk ::;:: B(l/Iki ), j ::;:: 1 or j ::;:: 2, and 

o 0 

WQ(Y)::;:: (Q11Tn(y)Q)::;:: 11 (Q l I1T Z(YI)Zz Q I)' 
lEN 

2 z ::;:: Iz or a~. 
From 

(Qk 11Tk (B(l/Iki » Qk ) ::;:: ± 2~~ (G'k 73;) ::;:: 0 l o 0 0 0 0 0 

(Qk l1Tk (B(l/Iki »agQk )::;:: 2i~~(G'k 73;)::::: 0 
00000 00 

x (j ::::: 1 higher POSitiOn) 

j ::::: 2 lower position 

we deduce wnl (io(H,s) = O. 

Moreover, 

wn (l}~ B(1/I1)B(l/I1») = l}~ Wo (B(l/I~}B(l/Im· • 

(4.3) Proposition: There exists a quasifree state 
WOf unitarily equivalent to wn iff Wo is a discrete 
state. 

Proof: Suppose wn is unitarily equivalent to a 
quasifree state wn' with 

Q f = ® (G' k) , G' k {3 k = 0, V kEN. 
kEN {3 k 

Recall that wn and w nf are unitarily equivalent iff 
(Sec. II, Proposition) 

6 [1 - I (Qk IQ k) I] < + <Xl, 
kEN 

which is equivalent to::3 M,L NI, M u L =N, 
MnL:::::¢ 

~ (1- lG'k l) + ~ (1- l13k i) < + co, 
kEM kEL 

~ (1 - IX;) + ~ (1 - ';1- x k) < + co 
kEM kE:L 

which implies that: n kEM .J""X";. converges and is dif
ferent from 0, therefore so does n kEM x k' ~ kEM 

(1 - x k ) < + co; n kEL ';1 - x k converges and is dif-
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ferent from 0, therefore so does n kEL (1 - x k)' 

~kEL x k < + 00; so ~kEN xk(1- xk ) < + 00. 

Conversely, if ~kEN x k(1- xk ) < + 00, let 

L =N -M, 

which implies nkEM x k converges and is different 
from ° such as n kEL (1 - x k) and hence n kEM ,;x;. 
and n kEL ../1 - x k' In other words 

~ (1- rx;) + .L; (1- "/1-xk ) < + 00. 
kEM kEL 
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The divergent perturbation expansion of the exactly solvable vacuum polarization by an external constant electromagnetic 
field is examined. It is proven that the Stieltjes method, known to be valid for the vacuum polarization by a pure electric or 
a pure magnetic field, fails in the general case to sum the perturbation expansion to the exact solution. This implies the non· 
convergence of the Pade approximants to the 'solution under these conditions. The validity of the Borel summation method 
and the convergence of the related approximation procedures are also proven. 

1. INTRODUCTION 

The vacuum polarization by a prescribed external 
constant electromagnetic field is one of the few phe
nomena in quantum electrodynamics for which an 
exact solution is known.! Furthermore, this solution 
gives rise to a divergent expansion in powers of the 
fine structure constant. Now in recent years there 
has been considerable interest in proving the applica
bility of the classical summation methods for diver
gent power series2 to many problems in quantum 
mechanics as well as in quantum field theory, for 
which the perturbation expansion is known to be diver
gent: 3 it is, therefore, interesting to show the validity 
of these methods in the present context. 

For the particular case of the vacuum polarization by 
a pure magnetic or a pure electric constant field it 
has been proven that the divergent perturbation ex
panSion is Bore14 and also Stieltjes 5 summable to the 
exact solution, this last result implying the conver
gence of the Pade approximants. 

In the present paper the general case in which both 
the electric and the magnetic fields are present will 
be examine, and it will be proven that the perturbation 
expansion does not sum to the solution under the 
Stieltjes method (while it still does under the Borel 
one), thus showing the nonconvergence of the Pade 
approximants under these conditions. 

However, the convergence to the solution of the gene
ralized Pade approximants6 will be shown and also 
that of the approximation method conSisting of apply
ing the Pade approximants to the appropriate gene
ralized Borel transform. 7 

2. INAPPLICABILITY OF THE STIELTJES METHOD 
AND NONCONVERGENCE OF THE PADE 
APPROXIMANTS 

The complete Lagrangian due to the vacuum polariza
tion by an external constant electromagnetic field, as 
it has been computed by Schwinger,l reads 

1 1. 00 e- S 

L=--F-- -
81T2 0 s3 

x (eS)2G Re cos(esX) 1 _ i (~S)2F), (2.1) 
1m cosh(esX) 

where e is the electron charge,F ::::: t F~/J = % (H2-E2) 
is the free electromagnetic field Lagrangian, G =- t 
€ F F :::: EoH is the pseudoscalar electromagne-

p/JpO jI./J po [. )] 1/2 hc field invariant,X =- 2(F + zG , and the elec-
tron mass has been put equal to 1. 

Putting Re(esX) =- x, Im(esX)::::: y, 

we have 

41Tas 3G = xy, 41Tas2F = ~ (x2 - y2), (2.2) 
and 

x2 = 41Tas2( F + (F2 + G2)1/2J, 

y2 = 41Tas2[- F + (F2 + G2)1/2], 

where a = e2 / 41T is the fine structure constant. The 
Lagrangian (2. 1) takes now the form 

L=-F-LJ> 

where the interaction part L1 is given by 

1 foo e-s 
L[=-- -

81T 2 0 s3 

X [xy coth(x) cot(y) - 1- i (x2 - y2»)ds (2.3) 

and use of the identity cosh(x + iy) =- cosy coshx + i 
siny sinhx has been made. Notice that L j is a func
tion only of a through (2.3), since F and G are con
stant quantities.) The first step in proving our state
ments is the following: 

Lemma 2.1: The Lagrangian {2.1} may be written 
in the form 

L (a) = 2a2 J"oO Vi (t)dt 
I -00 1 + exi (2.4) 

!J; (t) being a function positive in (- co, + co) with finite 
moments in the same interval, i.e. 

J+oOtn!J;(t)dt< + co, n=O,1,2···. 
-00 

Proof: From (2. 3), using the expansions 

x cothx:::: 1 + 2x2 f; 1 
,,~1 x2 + n2112 ' 

y coty =- 1 + 2y 2 f; 1 , 
11=1 y2 _ n21T2 

1T2 00 1 

6 = R n2 ' 
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Taking into account the expansion of cothx and per
forming an elementary rearrangement, this formula 
becomes 

L/a) == __ 1_ 1.00 e-
3 

XZy2[y2 I; 1 
47T2 0 s3 x2 n=1 (y 2 _ n27T2) n2lT2 

6 - 2 6 f - n7T X2 0() 1 00 1 (Y) 
y2 n=l (x2 + n2lT 2)n27T 2 n=l x2 + n27T2 1 x 

+ 2 ~ 1 f (?:.- n7T\lds, 
n=l y2 - n27T 2 1 y JJ 

where f 1 (z) == (z cothz)/2z2,and putting fez) == 
cothz/z we have 

L l(a) = - 1. - X2 Y 2 6 f - n7T 1 00 e- S 
[ 00 1 (y) 

47T2 0 s3 n=l x2 + n27T2 x 

+ 6 f - nlT ds. 00 1 (X 1J 
n=l - y2 + n27T 2 y (2.5) 

Let us now introduce the following variables: 

s' == s2, x' == x2/as2 == 47T[F + (F2 + G2}1I2], 

y' = y2/a S2 = 47T[- F + (F2 + G2)1/2], 

so that (2. 5) becomes 

L
1
(a) == 2a2 1.00 

e-s'G2 [t 1 f(J')1/2 n7T 
o n=l as'x' + n27T 2 \x' 

+ 6 - ds' 00 1 (X')1/2)~ 
n=l n27T 2 _ as'y' f y' 

and can be rewritten in the following way: 

L/a) = 2a 2(G2 
y' 

(2.6) 

x fO 6:=1 f«x'/y'}1/2n7T) exp[-n7T<lt1)1/2/y'1/2] dt 

-00 l+at 

G2 00 60()_ f «y' /X'}1/2 n7T) exp(-n7T t 1/ 2 lx' 1/2} ) +-1. ~ ~ 
x' 0 1 + at 

== 2a 2 fCQ 1/1 (t) dt 
-00 l+at' 

where 

1/I(t} == - .B f - n7T G2 00 ~(X')1/2 ) 
y' n=l y' 

G2 
x exp[ -n7T(- t)1/2 /(y2)1/2] 11 (- t) + -

x' 

00 (( ')112 ) X ~ f ~, n7T exp(-nlTt1/ 2/x'1/2)11(t), 

(2.7) 

the moments being 

== 2(2m + 1)1 f £ [ff(X')1I2 n7T\(;~)mJ. 
n=l n27T 2 \' y' ) n27T 2 

(2.8) 

The following statements are now immediate conse
quences of Lemma 2. 1. 

(a) The perturbation expansion of L 1 (a) in power 
series of a has vanishing radius of convergence. It 
is indeed enough to remark that, from (2. 4), the for
mal expansion of L I (a) is given by 

00 

L1 (a) == 2a 2 6 Am(- a}m (2.9) 
m=l 

and from (2. 8) it follows that 

lim AJ/n == + 00 • 
n-+O() 

(b) An integral of the type (2.4) defines, a priori, two 
analytic functions: one in the upper half-plane Ima<O, 
and another in the lower half-plane Ima > O. In our 
case, however, one function can be analytically con
tinued into the other, since 1/I(t} defined by (2. 7) is 
piecewise analytic, and this implies that the real axis 
is not a natural boundary. 

To prove our statements about the failure of the 
Stieltjes method in summing the divergent expansion 
(2. 9) and the nonconvergence of the Pade approxi
mants to the exact solution, we need also the follow
ing: 

Lemma 2.2: The Hamburger moment problem 

J
+OO 

An == -0() t n cp(t)dt, (2.10) 

where An are given by (2. 8), and cp(t} is a nonnegative 
function in (- 00, + oo), is indeterminate. 

Proof: It will be shown by explicit construction 
that there exists at least one function other than 1/I(t) 
defined by (2. 7) whose moments coincide with An. It 
is indeed easily seen that there exists A > 0 such that 
1/I(t} > Ae-B(i t I) 1/2, where B == 7T/min(v'Y', R}. NOW, 
taking into account the well-known integrals 8 

J+oo tn e-kt2/3 cos(kla t2/3)dt == 0, n == 0,1,2, .•• , 
-00 

k> 0, 

we have that 1/1 1 (t) = 1/I(t) + Ae-B e-Bt2/3 

cos(.J3 Bt2/3) is positive in (- 00, + 00) and 

1+00 J+oo 
-00 1jI1 (t) tndt = -00 1/I(t} tndt = An· 

As a direct consequence of the former lemmas, we 
have now the following: 

Theorem 2. 1: The divergent perturbation expan
sion (2. 9) does not sum to L1 (a) under the Stieltjes 
method, I.e., the Stieltjes type continued fraction 
associated with the power series (2. 9) does not con
verge to L1 (a). This implies that no diagnonal 
sequences of Pade approximants to (2. 9) converge to 
the exact solution. 

Proof: We know that L1 (a) has the representation 
(2. 4), where 1/I(t} is a particular solution of the inde
terminate Hamburger moment problem (2.10). Then, 
by a well-known theorem of Hamburger,9 for the 
Stieltjes type continued fraction associated with the 
series (2.9) which exists because the moment prob
lem has solutions, one of the two following cases 
holds: 
(i) The continued fractions is divergent, or 
(ii) the continued fraction converges to a mero
morphic function in the whole complex a plane. 
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Since we know that L1 (a) is not meromorphic, in any 
case the continued fraction does not converge to it, 
and neither do the odd and even approximants of the 
continued fraction, the [N,N] and [N,N - 1] sequences 
of Pade approximants. The same result holds for any 
other diagonal sequence by a theorem of Wall. 1o 

Let us close this section by indicating how it can be 
recovered in this framework the Stieltjes summabili
ty obtained in Ref. 5 with a different method, for the 
particular case of a pure electric or pure magnetic 
field. 

A pure magnetic field is obtained when G = 0, F = ~ 
H2> 0, i.e., through (2.2), Y = 0, x = esH. Alterna
tively one has a pure electric field when x = O,Y = e sE. 
Consider now only the pure magnetic field, since for 
the pure electric one our considerations are the same. 

By taking the constant H equal to 1, formula (2.3) be
comes 

1 (00 e- S 

L1 = - - Jo - [(es) coth(es) - 1- t (es)2] ds, 
81T 2 s 3 

(2. 11) 

and its divergent Taylor expansion in powers of a is 
given by 

LH(a) = __ 1_ I; (81T)2n B
2n 

(2n - 3)! an 
1 81T2 n~2 (2n)!' 

(2. 12) 

where B2n are the Bernoulli numbers. The same 
procedure worked out for L l(a) shows that (L7 (a »/ 
(a 2 ) may be written under the form 

L7(a) =_ 1.00 a(t)dt 
a2 0 l+at' 

(2.13) 

where 

aCt) = 1... 23 _1_ e-n .fiftI2 > 0 
21T n~1 n21T 2 ' 

0:::; t < 00, (2.14) 

its moments being of course given by 

an = 1000 

tn aCt) dt 

_ (- l)n+1 (81T)2(n+2) B (2n + I)! 
- 81T2 2(n+2) [2(n + 2)]! 

Now, since B 2n ~ (- l)n-1 ~2n) !/(22n-11T2n) as n -~ co,ll 
the Carleman criterion8 L;:~o 1/2n..;a;; = 00 is 
st!:tisfied so that the Stieltjes moment problem an = 
Jo

w 
tn aCt) dt is determined. As it is well known, this 

implies the convergence to (Lf(a»/(a 2 ) of the 
Stieltjes type continued fraction associated with its 
divergent expansion, i.e., the Stieltjes summability, 
and, equivalently, the convergence to Lf (a) of any 
[N,N + j], j;:: 1, sequence of Pade approximants to 
the divergent series (2.12). 

3. BOREL SUMMABILITY AND CONVERGENCE 
OF THE RELATED APPROXIMATION METHODS 

We have seen so far that the Stieltjes method fails, 
in the general case, to sum the divergent perturbation 
expansion to the exact solution. This is not the case 
for the Borel one, as we will now prove. From (2.6) 
we have 
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1 x I; (f«X' /y')1/2 n1T) 
n~1 n21T2 1- [(as'y')/(n21T 2)] 

+ f«y'/x') 1/2 n1T) 
n21T2 

We can write 

1 ) 
1 + [(a s' x')/ (n21T2)] 

. (3.1) 

Ll(a) = 2a 2 1000 

e-/;I F(as')ds,', (3.2) 

where F(a) is given by the Stieltjes transform 

F(a) = J+OO dp(t) dt (3.3) 
-00 1 + at ' 

the function pet), bounded and increasing for - 00 < t 
< co, being of course defined as follows: 

pet) = G2 ~ [f«X'/y')1/2n1T) e it +~) 
n=1 n21T2 \ n21T2 

+ f«y'/X')1/2 n7T)e(t - ~-)J. 
n21T2 n2JT2 

(3.4) 

It is a simple matter to see that the Stieltjes trans
form (3.3) defines a meromorphic function in the 
whole complex a plane, having simple poles with 
positive residues at a = - (n21T2)/(X'), n = 1,2, ... ; 
a = + (n2 1T 2 )/( y'), n = 1,2, ... ,and that its conver
gent Taylor expansion around a = 0 is given by 

F( a) = 2 L (- a) m L - f ~ n1T - -Y-00 00 G2 [ (( ')1/2 ) ( , )m 
m~O n =1 n21T2 Y' n21T2 

+f((:;Y12n7T
) (n~~2)m} (3.5) 

Defining, as usual, the Borel transform of order 2 of 
the formal perturbation expansion (2.9) of (L l(a»/ 
(2a 2 ) through the power series 

Lf(a) ~ Am --= L..J (- a)m, 
2a 2 m=O (2m + I)! 

(3.6) 

formula (2.8) shows that the convergent expansions 
(3.5) and (3.6) coincide, so that 

LB(a) 
_1_ == F(a). (3.7) 

2a 2 

The Borel sum of order 2 of the series (2.9) is de

fined by the integral 1000 

e-R (Lf(as»/(2a 2s 2)ds; 

then, through (3.7) and (3.2), since this last integral 
is uniformly and absolutely convergent in any com
pact having no intersection with the real axis, we can 
conclude: 

Theorem 3.1: The divergent perturbation expan
sion (2.9) is Borel summable of order 2 to the exact 
solution L lea) in the whole a plane cut along the real 
axis. 

Let us now prove the convergence to the solution of 
the approximation method proposed in Ref. 7, which 
consists in taking the Pade approximants on the Borel 
transform analytic at the origin. 

In this procedure, thus, approximants to (L I(a»/(2a 2 ) 

are defined by 
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fiN,N+j](a) = 100 
e--ISF[N,N+jl(as)ds, (3.8) 

o 
where F[N.N+j](a) are the [N, N+ j] Pade approxi
mants to the Borel transform F(a) defined by (3.3). 

We have now the following: 

Theorem 3.2: 

lim fB[N,N+j](a) = L1(a), j 2: 1 
N-oo 

(3.9) 

uniformly in any compact of the a plane. 

Proof 12: Let us remark that we have to prove 
only the convergence of fJN,N+jl(a) to (L1(a»/(2a 2); 
as it is well known, this implies the convergence of 
any sequence flN,N+j 1, j > - 1, and then also the 
validity of (3.9) for any j 2: 1, since thefJN,N+j+2] 
approximants to (L l(a»/(2a 2) are the fiN,N+j] ones 
to L](a). Now, since F(a) is meromorphic in the 
whole a plane having simple poles with positive re
sidues along the real axis, it is known13 that 

limF[N,N-1](a) = F(a) (3. 10) 
N-co 

uniformly in any compact containing none of the poles 
of F(a). Now for a in the cut plane, the boundedness 
of IF(a)1 as lal ~ c:t:J as well as that of IF[N,N-1](a)1 
for any Nare clearly sufficient to justify in (3.8) the 
interchange of the limit N ~ c:t:J with the integral, in 
spite of the nonuniformity of the convergence of 
F[N,N-1](a) to F(a) at infinity. We can then conclude 

lim F1N,N-1](a) = L I (a)/2a 2 , 
N->co 

uniformly in any compact of the a plane cut along the 
real axis. 

Let us address ourselves now to the question of the 
convergence of the ~neralized Pade approximants, 
introduced in Ref. 6 and proposed in Ref. 14, in the 
framework of a superposition of the Stieltjes and 
Borel summation methods, as an approximation 
method for functions whose divergent Taylor expan
sion is of Stieltjes type, but not stieltjes summable. 
We will now briefly recall the method of Ref. 14, to 
which the reader is referred for a detailed treatment. 

A formal power series 

(3. 11) 

is said to be (S, B; m) summable if and only if its 
Borel transform of order m, defined as 

co C 6 __ n_zn 
n=O (mn)' 

(3. 12) 

is Stieltjes summable. Since, as it is well known, 
there exists in this case one and only one positive 
measure q(x) in [0, c:t:J), such that the Stieltjes sum of 
(3.12) can be written in the form 

F (z) - l co dq(x) 
m - 0 1 + zx' (3. 13) 

the (S,B;m) sum of (3.11) has the expression 

*Fulbright Scholar. Supported in part by funds from the National Science 
Foundation. 

fez) = 100 

e-ada 100 
dq(x) = 100 

e-aFm (zam)da. 
o 0 1 + amzx 0 

(3.14) 
The generalized Pade approximants to the series 
(3.11) are now defined as follows: 

fj-.N,N+j](z) = 1
0

00 e-aFj-.N,N+j] (zam)da, (3.15) 

where, as usual, the [N, N + j] Pade approximants to 
Fm(z) are indicated by Fj-.N,N+j] (z). 

We now have 

Theorem 3.3: The divergent perturbation expan
sion 6':=0 Am(- a)m is (S,B; 1) summable to (L/(a» 
/(2a)2; or, equivalently, any [N, N + j),j 2: 1, sequence 
of generalized Pade approximants converges to 
L lea), uniformly in any compact of the a plane cut 
along the real axis, 

Proof: We have to show the Stieltjes summability 
of the Borel transform of order 1 of the expansion of 
(L l(a»/(2a 2), Le., of the series 

f; Am(_ a)m = f; (2m + 1)'(_ a)m ~ ~ 
m=O m! m=O m! n=l m 21T2 

x [~l(Y' )112 n1T) (~) m 
X' ~' n21T2 

+-f - n1T --- • 1 ~(x') 1/2 ) ( ay' ) mJ 
y' y' n2 1T2 

(3.16) 

It is easily seen that the above series is the divergent 
Taylor expansion of the function 

Lf1(a) i+co X(t)dt . 
---= ---, 

2a 2 -00 1 + at 
(3. 17) 

where 
X(t) = 2t, f; f«Y'/x') 1/2m) e-<n2

1f 2/4 Y ')e(_ t) 
y n=l n 1T 

+ 2t f; f«x' /y ')1/2n 1T) e _(n21f 2/4x')t e(t) > 0 
x' n=l n1T ' 

-c:t:J<t<c:t:J. (3.18) 

The analyticity properties of (3.17) are, of course, 
the same as those of L lea). 

Now, since one has trivially 

00 ~:Am) -1/ m 6 -, =c:t:J, 
m=O m. 

the Hamburger moment problem for the coefficients 
Am/m' is determined by the Carleman criterion. 
The same Hamburger theorem employed in the proof 
of (2.3) ensures then the convergence to (LBl(a»/ 
(2a 2 ) of the Stieltjes type continued fraction associ
ated with the series (3.16), i.e., the Borel transform 
is Stieltjes summable. As we know, this means the 
convergence of the [N, N] and [N, N - 1] Pade se
quence, j > 0, is also convergent to (LB1(a»/(2a 2). 
Then, proceeding in exactly the same way as in 
Theorem 3.2, we can conclude that any sequence 
[N, N + j] of generalized Pade approximants NN,N+j] , 
j 2: 1, converges to L lea), uniformly in any compact 
of the cut a plane. 

t Address after July I, 1972: Istituto Naz. di Fisica Nucleare, Sez. di Bologna, Via 
Imerio 46, 40126 Bologna, Italy. 
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Radiative transfer in adjacent half-spaces with specular reflection 
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Radiative transfer in absorbing, emitting, isotropically scattering, gray adjacent half-spaces with specular reflection at the 
interface is solved rigorously by the application of normal-mode expansion technique_ An alternative method based on the 
superposition of half-space problems is also presented for the solution of the problem. Once the expansion coefficients for 
the solutions are evaluated from the given relations, the physical quantities such as the angular distribution of radiation 
intensity and the net radiative heat flux anywhere in the medium can readily be determined. 

I. INTRODUCTION 

The problem of radiative transfer in adjacent media 
which absorb, emit, and scatter radiation is of in
terest in many applications. Davison 1 and Chandra
sekhar 2 were among the earliest investigators who 
studied the angular distribution of radiation at the 
interface of two adjoining media. In the field of neu
tron transport theory, related problems have been 
investigated3 - 6 for the cases involving a transparent 
interface. In the present study, radiative transfer in 
absorbing, emitting, isotropically scattering, gray, 
adjacent half spaces with specular reflection at the 
interface is solved rigorously using Case's 7 normal
mode expansion technique. An alternative method of 
treatment based on the superposition of half-space 
problems is developed for the solution of this prob
lem. The present analysis have the advantage that, 
once the expansion coefficients are determined for 
a given set of parameters, the physical quantities 
such as the angular distribution of the radiation in
tensity and the net radiative heat flux anywhere in the 
medium are immediately determined. 

In Sec. II we present a rigorous solution of the radi
ation problem in two adjacent half spaces for the 
nonconservati ve (i.e., WI < 1, W 2 < 1) case, while in 
Sec. III we solve the problem for a combination of a 
conservative and a nonconservative (i.e.,w 1 < 1, 
w 2 = 0) media. Finally, in Sec. IV we present the 
method of superposition. 

The two-region radiative transfer considered here 
may find applications in boundary layer heat trans
fer involving two different streams separated by a 
semitransparent barrier, in solidification and melt
ing problems, and in two-region heat conduction when 
radiation effects are important in such problems. 

II. NONCONSERVATIVE CASE (WI < 1, W2 < 1) 

The equations of radiative transfer for absorbing, 
emitting, isotropically scattering adjacent half 
spaces are given as 

0/1(T, I1-) WI 11 I I 

11- OT + 11(T,I1-) =S1(T) +""2 -1 11(T,11- )dl1- , 

T < 0, (1a) 

012(T,I1-) W 2 11 " 
11- OT +/2(T,I1-)=S2(T) +2 _lI2(T,J.L)dJ.L, 

T > 0. (1b) 

In writing the boundary conditions for this problem, 
consideration will be given to reflection of radiation 
at the interface. According to predictions by the 
classical electromagnetic theory, reflection and re
fraction at the interface vary with direction. How
ever,because of the complexity of analysis,the re-

flectivity is generally taken independent of direction 
even for one region problems. For the more involved 
two-region problem considered here, it is reasonable 
to assume constant reflectivity and neglect the con
densation effects. With this consideration we write 
the boundary conditions for the above problem as 

/ 1(0,11-) = PI11(0,-J.L) + r2/ 2(0,/l), 

12(0,/l) =P212(0,-/l) + r 1/ 1(0,/l), 

and at infinity as 

lim 1 i( T, /l) -) Pi( T, /l), 
IT 1 .... 00 

i == 1 or 2, 

/l < 0, (2a) 

/l > 0, (2b) 

(2c) 

where I i ( T, /l) is the intensity of radiation, T is the 
optical variable, Wi is the single scattering albedo, 
and /l is the cosine of the angle between the positive 
T direction and the directed intensity. Si(T) == (1 - Wi) 

x n~(JT~( T)/rr is the inhomogeneous source term, 
P i ( T, /l) is the corresponding particular solution, (J is 
the Stefan-Boltzmann constant, T is the temperature, 
and Pi and r i , i == 1,2,are the reflectivity and trans
miSSivity of the interface. We note that r 1 = 
(1 - P1)/n2 and r 2 = (1 - P2)/n2, where n is the re
lative refractive index (i.e., n1/n2 ). When n = 1, both 
media have identical refractive indices, then reflec
tivity vanishes and the interface becomes transpar
ent. When the two media have identical refractive 
indices but separated by a thin, semitransparent, re
flecting layer, the above boundary conditions with re
flection are still valid, but with n == 1. 

We proceed to write the desired solutions of the 
equations of radiative transfer as a linear sum of the 
normal modes and a particular solution in the form 7 

11(T,/l) =A(-VO)¢I(-vO,/l)eTlvo 

+ 101 
A(-l1)¢I(-l1, /l)e T/ndn + P1(T, /l), 

T < 0, /l E (-1,1), (3a) 

- Tin 
I 2( T, /l) = A(l1o)¢ 2(110' /l)e 0 

11 -TIT} 
+ 0 A(11)¢2(11,I1-)e dl1 + P2(T, 11-), 

T> 0, 11- E (-1,1). (3b) 

In writing Eqs. (3) we have omitted those elementary 
solutions that diverge at infinity, thus the resulting 
solutions satisfy the requirement of Eqs. (2c). Here, 
A(-vo),A{-7J),A{7J o), and A{7J) are the expanSion co
efficients which are to be determined by constrain
ing these solutions to meet the boundary conditions 
given by Eqs. (2a) and (2b). The normal modes are 
defined as 7,8 
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i = 1 
, (4a) 

i=2 

¢j(n, J.L) = t w j 11[P!(1) - /-L») + Ai(11)o(11 - J.L), 

1) E(-l,l) i = 1 or 2, (4b) 

(4c) 

and the discrete eigenvalues (110,110) are the zeros of 
the dispersion function 

Aj(z) = 1 + Wj ~ tl ~ = 1 - WjZ tanh-l.(~), 
2 - /l -z Z 

i = 1 or 2. (4d) 

Here P is a mnemonic symbol used to denote that the 
ensuing integral is evaluated in the Cauchy principal
value sense,and o(x) is the Dirac delta function. 

Before pursuing the analysis, we note that once the 
intensity of radiation is determined, the net radiative 
heat flux q( T) is obtained from 

Analysis: The introduction of the solutions given 
by Eqs. (3) into Eqs. (2a) and (2b), respectively, yields 

M 1(/l) + Pl[A(-1I0)¢I(-1I0,/l) 

1 
+ fo A(--f]')¢k-11',/l)d11'] 

+ r20(110)¢2(-1)0,/l) + J: A(11')¢2{-11',/l)d11 ') 

1 
=A(-1I0)¢1(1I0,J.L) + fo A(-11')¢l(1)'J.L)d11', 

/l > 0, (6a) 

M 2(IL) + P20(110)¢2(-11 0,/l) + f: A(11')¢2(-11',/l)d 11 ) 

+ r 1( A(-1I0)¢1(-1I0,/1) 

+ J0

1 
A(-11')¢l(-11',J.L)d1)) 

=A(110)¢i(110'J.L) + f: A(1)')¢2(11',/l)d11', 

/-L > 0, 

where 

M 1(J.L) == P1Pl(0,/l) -P1(0,-IL) + r 2PiO,-IL), 

(Sb) 

/l > 0, (7a) 

M 2(IL) == P2P 2(0,-IL) -P2(0,IL) + r 1P1(0,/l), 

IL> 0, (7b) 

We note by the half-range completeness theorem 7 

that an arbitrary Holder function defined in the inter.,. 
val/l E (0,1) can be expanded in terms of ¢1(110,/l), 
¢ 1(11, IL) or ¢2 (11o'/.I.)¢ 2(1), IL), and the right-hand side 
of Eqs. (6) are such expansions. Equations (6a) and (6b) 
are two coupled singular integral equations; they may, 
however, be transformed to coupled regular Fredholm 
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integral equations by making use of the orthogonality 
properties of the normal modes and of the results of 
various normalization integrals summarized in the 
Appendix. 

We operate Eq. (6a) first by the operator f01 /lH1 (IL) 

x ¢l(lIo,J.L)d/l and then by f; J.LH1(/l)¢1(11,/l)dIL and, 

respectively, obtain 

(8a) 

(8b) 

Now we operate Eq.(6b) first by the operator f~ILH2 (IL) 

x ¢2(110dJ.)d/l and then by fol J.LH2{/l)¢ 2(11 , J.l.)dJ.l. 

and, respectively, obtain 

(9a) 

(9b) 

i = 1 or 2. 
(lOa) 
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The normalization integrals are given by 

Wi P dAi(z) I {1I0' 
Nim=-2-Him~ ,~= 

III =g Tio' 

i = 1 
, 

i=2 
(lOb) 

Ti E (0,1), 
(10c) 

where 

Ai(1)Ai(1) = A~(1) +[~(wi7j1T»)2== l/gi(w p 1), (lOd) 

and the function g i( Wi' 1) is tabulated. 9 Further, the 
Hi (z) function for isotropic scattering is obtained 
from the solution of the nonlinear integral equation10 

1 wiz 1 djJ 
--= 1 + - f Hi(jJ) --, i = 1 or 2, (lOe) 
Hi (z) 2 0 z + /.L 

and it can be shown that 

i = 1 
, (lOf) 

i = 2 

i = 1 
(lOg) 

i=2 

Equations (8) and (9) provide four relations for the 
determination of the four unknown expansion coeffi
cients. These equations can be written more con
cisely in matrix notation as 

1 
(No -Ko)Ao = Go + fo K o(1)')A(1)')d1]', (lla) 

1 
N(1)A(1) = G(1]) + K(1)Ao + fo K(1), T/')A(T/')d1]', (llb) 

where we have defined 

[
A(-1])] 

A(T/) == , 
A(T/) 

(12a) 

(12f) 

(12g) 

In the above equations, the components of the vectors 
Go and G( T/) involve the particular solutions PI ( T, Il) 
and P 2(T, jJ) which depend on the type of the inhomo
geneous source terms Si(T), i = 1 or 2,of the equa
tions of radiative transfer equations (la) and (lb). 
Once the type of the source term is specified, a par
ticular solution of the equation of radiative transfer 
can be constructed. ll 

Equations (11) are regular, Fredholm type integral 
equations which can be solved numerically for the 
four unknown expansion coefficients. Once these 
expansion coefficients are determined, the intensity 
of radiation is evaluated from Eq. (3) and the net 
radiati ve heat flux according to Eq. (5), i.e., 

q1(r) = 21T(1 - w1) (-A(-lIo)lIoe TII/o 

- f01 A(-1])1]e TIlJdT/ 

+ (1 - w1t1 L~ P 1(T,jJ)jJdjJ), (13a) 

q2(r) = 21T(1 - w2) (A(1]o)1) oe-
T

/
lJo + f: A(T/)7je- r/lJ d1] 

+ (1-w 2)-1 tl P2(r,ll)jJdP,). (13b) 

Here we have used the relation 

(14) 

Analytical Approximations: Up to this point our 
analysis has been mathematically rigorous, and the 
degree of precision of the final solution for the radi
ation intensity and the net radiative heat flux depends, 
of course, on how accurately the four expansion co
efficients are determined. However, analytical ap
prOximations can also be obtained from Eqs. (11). 

The first-order solution is obtained by neglecting the 
continuum coefficients entirely [i.e.,A(1]) == O);then 
the discrete coefficients are obtained from Eqs. (lla) 
as 

(15) 

The second-order solution is found by neglecting the 
contribution from the kernel K(T/,T/') in Eq.(l1b},and 
by using in that equation the first-order solution for 
A~l). Then, A (2)(1]) is obtained from Eq. (lIb) as 
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(lBa) 

and substitution of A (2)(11) into Eq. (lla) yields A~) as 

A~) = [No - KO]-I (Go + I: Ko(l1')A (2)(l1')d l1 ). (16b) 

Special Case WI == W 2 < 1: For this special case, 
Eqs. (11) are simplified since /10 = 110' H I(~) = H 2(~) 
==H(~),CPI(~'/J.) =CP2(~'/J.) ==CP(~,/J.),andNIW =N2(~) 
== N(I;),where I; = 110 or 11 E(-I,l): 

(~ N{ )1 - CP(-110.110) ) A( ) 
110 ( ) p Tjo 

Tjo H T/o 

= G + II A( ') CP(-l1', 110) d' (17a) 
o p 0 7j H(7j') 7j t 

1 CP(-l1o,l1) 
-N(l1)A(l1) == G(T/) + () pA(T/o) 
7j H T/o 

+ r1 A( ') cp(-7j', T/) d '. (17b) 
P Jo 1/ H(1/') T/ 

where 

and 1 is the unit matrix. 

III. THE CASE WI < 1, W2 = 1 

We now consider a situation in which medium 1 is non
conservative (wI < 1) and medium 2 is conservative 
(w 2 = 1). The equations of radiative transfer are 
given as 

()[1(T,Il) WI 11 'I 
P. + II ( T, p.) = S 1 (T) + - II (T, P. )dp. , 

aT 2 -1 

T < 0, (18a) 

012 ( T, p.) 1 11 " 
P. + I 2(T,Il) ="2 I 2(T,/J. )dp., 

aT -1 

T> 0, (18b) 

subject to the boundary conditions (2a), (2b) , and (2c) 
with P 2( T, p.) being set equal to the normal mode 
which is allowed by the boundary condition at infinity. 

The solutions satisfying the boundary conditions at 
infinity are given as 

) r/v 
11(T,P.) =A(-1I0)CPl(-1I0,P. e 0 

+ 10
1 

A(-1/)CPl{-7j,Il)eTllldl1 + P 1(T,Il), 

T<O .. IlE (-1,1), (19a) 

1 
12(T,p.) =A + 10 A(1/)CP*(T/,Il)e- r/rldT/, 

T> 0, 11 E (-1,1), (19b) 

where the normal modes <h(- /10,11) and cP 1(-Tj,/1) 
are defined by Eqs.(4a) and (4b),respectively,and 
CP*(7j, 11) is defined as 

CP*(1/,11) = ~1/ [P/(1/ - 11)] + ;\*(11)0(7j - p.), (20a) 
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where 

(20b) 

When the Solutions given by Eqs. (19) are introduced 
into the boundary conditions (2a) and (2b), two coupled 
singular integral equations are obtained: 

SI(Il) + Pl(A(-/l0)CPl(-1I0,1l) 

+ 10
1 

A(-l1')CPl(-7j',P.)dTj) 

+ r2(A + I: A(7j')<P*(-7j',Il)dTj) 
1 

= A(-/l0)<Pl(1I0, 11) + 10 A(-Tj')<Pl(11',Il)d7j',(21a) 

S2(1l) + r 1 (A(-1I0)<Pl(-lIo,ll) 

+ I: A(-1/'}<P 1(-7j', P.}d7j) 

1 
+ P2 I A(7j')<P*(-7j', p.)d7j1 o 

1 
= (1-P2)A + 10 A(7j')<P*(7j',Il)d7j/, 

where 

Sl(ll) == P1P 1(0, 11) - P 1(O, p.), 

S2(1l) = r 1P 1(O,Il). 

(21b) 

(22a) 

(22b) 

These two coupled singular integral equations may be 
transformed to regular Fredholm integral equations 
by first operating Eq. (21a) by fo IlH 1(11 )CP1(1I0, Il)dll 
and I IlH1(P.)<P1(7j,Il)dll,and then operating Eq.(21b) 

by fo IlH*(Il)dll and I~ IlH*(Il)CP*(Tj,Il)dll. The re
sulting equations for the expansion coefficients can 
be written in the matrix form as 

1 
(N6 - Jo)Ab == F 0 + 10 Jo(I1')A(I1')d7j', (23a) 

1 
N*(1/)A(T/) == F(T/) + J(T/)Ab + I J(7j, Tj')A(T/')dT/', 

o (23b) 
where we have defined 

(24a) 

(24b) 

(24c) 

(24d) 

(24e) 

1 [N 1(T/) 0 J N*(7]) == - , 
11 0 N*(7]) 

(25a) 
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WI 1I~ dA 1(z) I N 1(1I0) = --H1(1I0) -- , 

2 dz Z"lb 

N1(T/) = T/HI(T/) Ai(T/)Ai(T/), 

N!(T/) == 1)H*(T/)A+(T/)A-(T/) , 

N(T/)A-{T/) = A. *2(T/) + (T/1T)2 == _1_, 
2 g(1,T/) 

r

2 

J H 1{T/') , 

P2 

H*(T/' 

and H*(z) function is the solution of 

_1_ == 1 + ~ t H*(p.) ~ • 
H*(z) 2 0 z + p. 

(25b) 

(25c) 

(25d) 

(25e) 

(26a) 

(26b) 

(26c) 

(26d) 

(26e) 

The solution of Eqs. (23) yields the unknown expansion 
coefficients. Analytical approximations can be obtain
ed as described previously. 

IV. SOLUTION BY SUPERPOSITION OF 
HALF-SPACE PROBLEMS 

In this section we present a method of solution of the 
adjacent half-spaces problem considered in Sec. II 
by the superposition of the solutions of single half
space problems. Although this method eventually 
yields the same set of relations for the expansion co
efficients as those given by Eqs. (11), it provides bet
ter inSight to the physical significance of the results 
given by Eqs. (11) as well as to the physical signifi
cance of various orders of approximations obtained 
from them. 

The radiation problem defined by Eqs. (1) and (2) are 
written more compactly in the form 

Ljlj (7, p.) = Sj' (27a) 

where we have defined the operator L j as 

- §. Wj t f Ljlj = J..I. + I j - - IjdIL 
07 2-1 

(27b) 

with 

7<0 (1, 
j =~ 

t2, 
, 

7>0 
(27c) 

subject to the boundary conditions 

I1(0,p.) =P111(0,-P.) + r 212(0,p.), 

12(0,1l) =P212(0,-Il) + r 111(0,1l), 

Il < 0, (28a) 

Il > O. (28b) 

We now represent the intensity I j (7, Il) by the super
poSition of the intensities Iji (7, Il) of single half
space problems in the form 

N 

I j {7,1l) = ~ I ji (7,1l) + lJij {7,1l), 
.=1 

(29) 

where 1j .(7, Il) are the solutions of the following sim
ple problems: 

and L 2121{7, Il) = S2 

. (l,7<0 
i =2,"',Nj J =~ , 

t 2, 7> 0 

subject to the boundary conditions 

Iji(O,p.) = (1 - Oli)(Pj l j • i - 1(0,-Il) 

+ ~ (1 - 0jk)r k1k.i-I(0, p.~ , 
and 

lim I ji {7, Il) ~ 0li1j(7, J..I.), 
IT ''''00 1 

i=1,2,"',N, j=~' 
t 2, 

. f 1, 
J =) 

t 2, 

7<0 

7>0 

(30) 

Il < ° , 
p. >0 

(31a) 

(31b) 

Here 0ii is the Kronecker delta,and P.(7,1l) is a 
particular solution of Eq. (30). 

The function lJi j ( 7, Il) satisfies the following equation: 

7<0 
J = , . {I, 

2, 7 >0 

subject to the boundary conditions 

lJij(O, Il) = Pj [IjN(O,-Il) + lJij (O,-Il>1 

2 

(32) 

+ :B (1 - Ojk) r k [IkN{O,p.) + lPk{O, 1l)J, 
k=l 

. { 1, 
J = 

2, 

Il < 0 
(33a) , 

Il > ° 
and 

T<O 
(33b) 

7>0 

Scrutiny of the radiation problem defined by Eqs. (30) 
and (31) reveals that the intensity function I ji (7,1l) 
approaches zero as N becomes infinite. Then, in Eq. 
(33a) the forcing fUnctions IjN (O,-Il) and IkN(O,j.L) 
vanish, and the solution 'Ilj (T, JJ.) of Eq. (32) subject to 
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boundary conditions Eqs. (33) become trivial for N 
--+ co. Therefore, for N --+ co, Eq. (29) becomes 

00 

Ij(r,/J.) = ~ Ijt(r,/J.), 
,=1 

. {I, 
J = 

2, r>O 

r<O 
(34) 

We now proceed to construct the solutions of the sin
gle half-space problems defined by Eqs. (30) and (31). 
The solutions for I j t (r, /J.) which satisfy the boundary 
conditions at infinity as given by Eq. (31b) can be 
written as a linear sum of the normal modes and a 
particular solution in the form 

lu(r,/J.) =A,(-lIo)(p!(-lIo,/J.)eT/Vo 

+ to A t (-T/)¢l(-r/,/J.)e T/TJ dT/ + OU P 1(r, /J.), (35a) 

-T/TJ 
12,(r,/J.) =A,(T/O)¢2(T/O,/J.)e 0 

+ toA,(T/)¢2(T/,/J.)e-T/TJdT/ + °UP 2(r,/J.). 
(35b) 

Substitution of Eqs. (35) into Eq. (34) yields the radi
ation intensity for the two adjacent half-spaces prob
lem as 

11(r,/J.) =(~ A,(-1I0~ ¢l(-lIo,(..I.)e T/VO 

+ f:(~ A i (-T/9 

x ¢l(-T/,/J.)eT/ TJ dT/ + P 1(r,/J.), 

r < 0, /J. E (-1,1), (36a) 

12(r,/J.) = (~At(T/o») ¢2(T/o,/J.)e-
T
/ TJo + f:(~ Ai(T/~ 

x ¢2(T/, /J.)e-T/TJdT/ + P 2(r, /J.), 

r> 0, /J. E (-1,1). (36b) 

The normal modes appearing in these equations have 
been defined previously, and the expansions coeffici
ents A t (-1I0),A t (-II),A, (T/o)' and Ai (T/) are the half
space problem expansion coefficients associated with 
the solution given by Eqs. (35). These expansion co
efficients are evaluated by constraining the solutions 
given by Eqs. (35) to meet the boundary conditions 
(31a) and then solving the resulting singular integral 
equation by utilizing the orthogonality property of the 
normal modes and various normalization integrals in 
a similar manner described previously. In this case, 
explicit relations could be obtained for these expan
sion coefficients; omitting the details we present be
low the resulting expressions for A i(-1I0),A, (-T/), 
A,(T/o),and A,(T/): 

1 (1 
A 1(-;) = N

1
(;) Jo /J.H 1(1./.)¢I(; ,/J.)F1(I./.)d/J., 

; = 1I0 ,T/, (37a) 

where 

(3Sa) 
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(3Sb) 

1 
N(1I0)A, = KoAi-l + fo Ko(T/')Ai-l(T/')dT/' + 0'2S0' 

i = 2,3, .•. , (39a) 

N( T/)A i( 1]) 
+1 

= K(T/)Ai-l + fo K(T/,T/')A i-1(T/')d1]' + 0i2S(T/), 

i = 2,3, ... , (39b) 

where 

_[A t (-lIo] A t - , 
Ai (T/o) 

where 

1 11 SiC;) = ~ 0 /J.H,(/J.)¢i(;,I./.)Ri(/J.)d/J., i = 1,2 

and 
R 1(/J.) = PIP l(O,/J.) + r 2P 2(0,-I./.), 

R2(/J.) =P2P 2(0,-/J.) + r 1P 1(0,/J.). 

(40a) 

(40b) 

(40c) 

(40d) 

(40e) 

(40f) 

Other quantities are the same as defined in Eqs. (12). 

A comparison of the solutions given by Eqs. (3) and 
(36) implies that if these two solutions are identical, 
we should have 

00 

Am = ~ Aim, ; = -11o,+ T/o,±T/ 
i=1 

(41) 

Indeed, the substitution of the coefficients At (;) given 
by Eqs. (37) and (39) into Eq. (41) has shown that the 
results are identical. In fact, the results as given by 
Eqs. (37) and (39) characterize the solution of the 
Fredholm integral equations (11) for the expansion 
coefficients by the method of successive iterations 
and provide an explicit relation for various orders of 
approximations. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge discussions on this 
subject with Dr. C. E. Siewert. This work was sup
ported in part by the National Science Foundation 
through Grant GK1l935. 

APPENDIX: HALF-RANGE COMPLETENESS AND 
ORTHOGONALITY THEOREMS 

Here we state the nalf-range completeness theorem 
presented initially by Case 7. 8 and the half -range or
thogonality theorem. In addition, a summary of the 
necessary normalization integrals is given. 

Theorem I: The eigenfunction ¢(T/o,l./.) and ¢(T/,I./.), 
T/ E (0,1) are complete on the half range in the sense 
that an arbitrary Holder function 111(1./.) defined for 
I./. E (0,1) can be expanded in the form 
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+1 

tJ;(~) =A('lJO)CP('lJo'~) + fo A('IJ)CP('IJ,~)d'IJ, where 

~ E (0,1). (AI) 

Theorem II: The eigenfunctions CP(TJo. jJ) and 
CP(TJ, ~), 1J E (0,1) are orthogonal with respect to the 
weight function p, H(~) on the interval ° :$ P, :$ 1, i.e., 

1 
fo jJH{p,) </>(1; , ~)CP(f.', ~ )djJ = 0, 

1;;>< 1;',1;,1;' =1Joor E (0,1). (A2) 

Normalization Integrals: 

f: jJ.Hi(~)</>i(TJ, ~)CPi(1J', ~)d~ 
= 1]Hi (1]) Ai {1J)Ai (1])o{'IJ -1]'), (A3) 

t ~Hi(~)CP~(I;,~)d~::; wI; 
2 

Him dAi(z)I ' 
o 2 dz z=t 
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i = 1 
, 1) and 1]' E (0,1), 

i = 2 

1
1 CPj (-I;, 1) 
o ~Hi(~)CPi(1],P,)CPj(-I;,~)dp, = TJ Him ' (A5) 

where 

{ vo' 
i =1 

TJ= , or 11 E CO, 1), 

1]0' i =2 

) vo' j = 1 
I; - , or I; = TJ' E (0,1). 

-t1]o. j = 2 

Normalization integrals (A3)-{A5) have been derived 
by making use of the properties of the eigenfunctions 
and the properties of H function given by Eqs. (10). 
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